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ABSTRACT

The objective of this dissertation is to carry out dynamic modeling, analysis and control for

Voltage-Source Converters (VSC). Two major applications of VSC will be investigated in this

dissertation: microgrid application and High Voltage Direct Current (HVDC) application.

In microgrid applications, VSC is used to integrate distributed energy sources such as battery

and provide system functions: such as real and reactive power regulation, voltage and frequency

support during islanding condition, and abnormal system condition mitigation. In HVDC applica-

tions, VSC is used to interconnect dc systems with ac systems. The functions supplied by VSC are

similar to that in microgrids. However, the transfer capability and stability in such kind of system

are of major interests.

Therefore, Part I of this dissertation focuses on VSC’s applications in microgrids. A battery’s

inverter can be operated in both grid-connected PQ regulation mode and voltage and frequency

support mode during islanding condition. Transition scheme between these two control modes is

firstly investigated to guarantee a smooth dynamic performance. Secondly, a coordinated control

strategy between battery’s and PV station’s VSCs is developed to improve microgrid’s power flow.

Thirdly, power quality improvement through the battery’s inverter is investigated. VSC’s con-

trol and capability for microgrid operation at normal, transient, and abnormal conditions will be

modeled and analyzed.

Part II of this dissertation focuses on VSC’s applications in HVDC. The following topics are in-

vestigated in this dissertation: (i) how to design VSC-HVDC’s controller using system identification

method? (ii) How to coordinate VSCs in multi-terminal HVDC scenarios? And (iii) how to deter-

mine VSC-HVDC system’s transfer capability based on stability limits? High-fidelity simulation

technology is employed to tackle control validation while frequency domain impedance modeling

technique is employed to develop analytical models for the systems. With linear system analysis

x
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tools such as Nyquist plots and Bode plots, stability limits and impacting factors of VSC-HVDC

systems can be identified.

This dissertation led to four journal papers (two accepted, one request of revision, one to sub-

mit) and five conference papers. The major contributions of this dissertation include: 1) Developed

VSC and microgrid models in high-fidelity simulation environment. Developed and validated VSC

control schemes for variety of microgrid operations: normal, abnormal, and transient. The de-

veloped technologies can facilitate a battery to make up solar power, improve system dynamic

performance during transients, and improve power quality. 2) Developed VSC-HVDC simulation

models, including two-terminal HVDC and multi-terminal HVDC. Developed VSC-HVDC control

schemes for two-terminal and multi-terminal systems. Developed analytical impedance models for

VSC-HVDC systems and successfully carried out stability limit identification.

xi
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CHAPTER 1

INTRODUCTION

1.1 Background

Due to the development in power electronics industry, the capacity and switching speed of

Insulated-Gate Bipolar Transistors (IGBTs) have been improved. IGBTs now meet the require-

ments of high power industry. The switching of IGBTs is controlled by gate voltage, and does not

require external circuit to turn off. This advantage makes the IGBTs a suitable choice to regulate

ac and dc networks without any complicated turn-off control circuit like the thyristors. Since the

dc voltage of IGBTs is controllable via proper switching on gate, and a capacitor is usually parallel

connected at the dc side which makes the dc voltage stable, the converter consists of IGBTs is

normally known as Voltage-Source Converters(VSC).

The VSC discussed in this dissertation normally consists of six IGBTs, which form a three-

phase ac to dc converter. Fig. 1.1 presents a common three-phase ac/dc converter using IGBTs.

Since each IGBT has a reverse parallel diode, the current has the capability to flow back and forth

between ac and dc side. Therefore, the VSC could either operate as a rectifier or an inverter without

any topology change. Proper control algorithms are needed to be designed to make it possible.

Renewable energies such as wind, solar and fuel cell require advanced integration technologies.

Unlike traditional energy resources such as gas, coal and oil, the output of renewable energies

depends on various factors including wind speed, sunlight irradiance and temperature. Hence,

power generated from renewable energies is not constant and varies from time to time, which is

a big challenge from a power system operator’s view. Moreover, the output of solar and fuel cell

energies are normally dc power, which is not compatible with an ac power system. However, thanks

to the development of power electronics technology, it is now a preferred solution to utilize VSC to

1
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Figure 1.1. Configuration of a three-phase ac/dc converter.

integrate those renewable energies into power system. Due to high freedom control capabilities of

VSC, wind, solar and fuel cell energies could be integrated into power system via proper back to

back, or dc/ac converters.

In order to coordinate with time variant renewable energies and make power supply reliable,

energy storage devices need to be installed along with renewable energies. Traditional energy storage

technology including water pumping which requires high investment and is limited by geographic

conditions. Battery and super capacitor are two growing solutions to store energy for power grids.

Both need VSC to interface with power system. Since the output of a battery and a super capacitor

are both dc power, a dc/ac inverter is required to connect them with ac grids.

Another benefit from VSC is the passive network supply capability, which is critical for microgrid

applications. Microgrid is usually supplied by several distributed generations whose power capacity

is relative low. A tie between a microgrid and the main ac grid is the major support for voltage

and frequency. In case the tie is cut off due to any severe fault, the microgrid may loss voltage and

frequency stability. However, if the VSC has proper controller designed, it will be able to switch

from power control to voltage and frequency control. The microgrid can still operate stably.

The full controllability of VSC is also valuable for long distance high power transmission. For

the integration of offshore wind farms, the loss on ac transmission is very high and the onshore

terminal voltage may drop dramatically, which makes the integration with grid impossible. The

underwater dc transmission is very efficient comparing to ac transmission. The VSC could control

2
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the power transmission from wind farm and compensate reactive power, which secures the power

system.

The dissertation will focus on the various applications of VSC on renewable energies, en-

ergy storage and power transmissions. The proper control algorithms for each application will

be analyzed and designed. Computer simulations conducting in PSCAD/EMTDC and MAT-

LAB/SimPowerSystems will be implemented and verify the proposed controllers.

In order to identify power transfer capability, detailed analysis including impedance modeling

of VSC will be conducted and the stability and resonance issues will be addressed.

1.2 Statement of the Problem

The dissertation focuses on the applications of VSC for renewable energies including microgrid

and VSC-HVDC. The following challenges are studied.

First, renewable energies such as wind, solar can be integrated into the system via VSC, which

can also form a microgrid. Due to the intermittence of renewable energies, a storage device like

battery has to be installed to improve the microgrid operation. The respective control strategy

is designed. Additionally, a control algorithm is needed to optimally coordinate the battery and

renewable energy in order to improve the reliability of microgrid. The islanding operation mode of

microgrid is also studied.

Second, the power quality of microgrid is a critical issue for the customers since the system

usually has unbalanced load and uncontrolled power electronics devices. To improve the power

quality such as mitigate the negative sequence and low order harmonic currents with lowest cost is

an urgent need of the customer and utilities companies.

Third, another application of VSC, VSC-HVDC, is more complicated and more critical for grid

security since it is dealing with high voltage system. The controller design and parameters tuning

is complicated and time consuming. Finding an efficient approach to determine the controller

parameters with desired system performance is valuable for the system designer.

3



www.manaraa.com

Fourth, offshore wind farms integration is a big challenge for the utility. Multi-terminal VSC-

HVDC topology is a suitable solution, however, the power flow between each station and the fault

ride through capability have to be addressed.

Fifth, the inherent cause of stability and resonance issues of VSC-HVDC is a key point which

can help engineers understand the inside of the system. Since the system is hybrid which includes

both ac and dc part, the analysis has to be take both side into account.

1.3 Approach

The controller design and analysis of system needs the application of control theory. The

models designed within this dissertation are built in details which means the dynamics of the

power electronics devices are included.

Two time-domain Electro-Magnetic Transients programs are adopted to build and verify the

models, which are PSCAD/EMTDC and MATLAB/SimPowerSystem. Both tools are able to

simulate the transients of power electronics devices during switching so the model is more accurate

and more closer to the actual system than average models. PSCAD/EMTDC is a standard tool

in power engineering industry and is widely used in utility companies and academia. The results

tested with this tool is widely accepted and can be considered consistent with the real system.

MATLAB/SimPowerSystem not only has detailed power electronics models but also has more

specific toolboxes for controller design, such as the system identification toolbox. The controller

design with MATLAB environment is friendly and is more powerful. Therefore, the combination

of those two tools can facilitate the research in this dissertation.

Depending on the system complexity, the simulations conducted in PSCAD/EMTDC and MAT-

LAB/SimPowerSystem can take very long time and sometimes may exceed the system capability

due to the limit of memory. A Real-Time Digital Simulator (RT-LAB) is used to overcome the

limitations. RT-LAB is a powerful super computer with fast processors and large memories, so it

can handle very large power system and detailed power electronics models. FPGA is utilized in

the system to manage the I/O between RT-LAB and other equipments, so that the simulation can

4



www.manaraa.com

run in real-time. This feature is very favorable for large system simulation such as the studies in

this dissertation.

1.4 Outline of the Dissertation

The structure of the dissertation is organized as follows.

Chapter 1 gives a brief introduction of the research issues including background information,

statement of problem, and approach adopted in this dissertation.

Chapter 2 presents a detailed literature survey on the applications of VSC in renewable energies

integration, which includes microgrid and VSC-HVDC. The various controllers for VSC are intro-

duced, and the technical challenges in microgrid and VSC-HVDC’s applications are also presented.

The dissertation can be divided into two parts. Chapter 3 to 5 is the first part which investigates

the applications in microgrid.

Chapter 3 develops a control strategies for a battery system to improve operation of a microgrid.

The control strategies will not only provide system requirements but also take safe operation of a

battery into consideration. A comprehensive model for a microgrid without synchronous generators,

with a battery system, an induction machine and passive loads will be built in PSCAD/EMTDC.

Control strategies will be developed and verified through simulation studies.

Chapter 4 studies the control strategies for a microgrid with both a battery group and a PV

array. The study approach is detailed model based simulation. The focus of this chapter is control

strategies at the autonomous mode. In this chapter, the research is expanded to include a PV array

in the microgrid. Coordination among different DERs will be taken into consideration.

Chapter 5 develops a control strategy for the inverter of a battery to compensate unbalanced

and harmonic currents under various grid voltage conditions for a microgrid. A PR controller

and HC controllers for specific order of harmonic currents are designed and tested under different

cases, in which the grid voltage has different level of unbalanced component. The case studied

in RT-LAB shows the battery inverter can successfully compensate unbalanced and odd harmonic

currents when the grid voltage has 0.5% and 2% negative sequence component.

5



www.manaraa.com

The second part of this dissertation is Chapter 6 to 9, which presents the research in HVDC’s

applications.

Chapter 6 proposes to use MATLAB system identification toolbox to identify the open-loop

system model for dc-link voltage control design for VSC-HVDC system. The d-axis current reference

is treated as the input while the dc-link voltage is treated as the output. With the simplified linear

model determined from the toolbox, a dc-link voltage controller’s parameters can be determined

accurately. Simulation results indicate that the identified model is accurate and the controller could

meet the performance requirements.

Chapter 7 investigates the modeling and simulation of a four terminal VSC-HVDC system

under both normal and fault scenarios. The Multi-terminal HVDC (MHVDC) system includes two

DFIG wind farms. The control strategies of both wind farm side converter (WFVSC) and grid

side converter (GSVSC) are described. Simulations of the system are carried out in a Real-Time

digital simulator RT-LAB. The system response under grid side ground fault is also studied, and

an approach to mitigate the over-voltage during fault is proposed and tested.

Chapter 8 investigates the resonance stability of VSC-HVDC system at ac side (the rectifier side

ac grid and the inverter side ac grid). Typical VSC-HVDC is adopted and impedance models of the

systems is developed with the inner and outer converter control loops included. Nyquist stability

criterion and impedance frequency responses is then be applied to detect resonances. Impacting

factors on stability such as feed-forward filter structure, line length and power transfer levels are

identified.

Chapter 9 investigates the dc resonance issues for a two-terminal VSC-HVDC system. Typical

VSC-HVDC controls and a practical dc transmission line is adopted. Frequency domain analysis

is applied to examine the characteristics of the derived dc impedance models. The models are

verified by comparing with the frequency responses obtained from detailed VSC-HVDC system

simulations in a real-time digital simulator. Real-time digital simulations are also used to validate

the dc resonance analysis on the impact of dc capacitor and power transfer levels.

Chapter 10 summarizes the research conclusions of this dissertation and proposes some sugges-

tions for the future work.
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CHAPTER 2

REVIEW OF RELEVANT LITERATURE AND RESEARCH

2.1 VSC Control

The VSC controls have been extensively studied in the literature, the most popular and mature

control methodology is call nested loop dq current control [1, 2]. There are some other control

schemes including Direct Power Control [3] and Sliding Mode Control [4]. The various control

algorithms will be described briefly as follows:

1. Conventional dq Control. The classical control algorithm for VSC is based on the nested loop

dq control scheme, which normally includes a outer control loop, either power control or dc

voltage control, and an inner current control loop [1]. Fig. 2.1 demonstrates the conventional

dq control algorithm. In which, the outer loop controls the active power and ac voltage while

the inner loop controls the dq currents. A frame of reference transformation is required for

this control. The ac voltages and currents are first transformed into dq quantities via Park’s

transformation, and the outer control loop generates the respective dq current references

depending on the control objectives. The inner current control loop regulates the dq currents

and generate the appropriate switching pulses for converters.

2. Direct Power Control. The Direct Power Control(DPC) eliminates the current control loop

and regulates the active and reactive power directly [3, 5, 6, 7, 8]. Fig. 2.2 depicts the

configuration of a Direct Power Controller, where the active power command is provided

by a dc-bus voltage control block and the reactive power command is directly given. The

errors between commands and feedback powers are input to the hysteresis comparators and

digitized to the signals Sp and Sq. The phase of the power source voltage is also digitized

to the signal θn. Sp, Sq and θn are the input to a switching table and generate appropriate

7
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Figure 2.1. Conventional dq control for a VSC.

switching signals to converters. The advantage of DPC is its simple structure and direct

control capability of powers. The controller is easy to be implemented.

3. Sliding Mode Control. Comparing to conventional PI control, the Sliding Mode Control(SMC)

does not need an accurate mathematical model of the objective to be controlled, but offers

better stability regardless the plant parameters and load variations [9, 10, 4, 11]. Fig. 2.3

demonstrates a Sliding Mode Controller for a boost inverter. The SMC first needs to select

appropriate state variables, and the input current iL1 and output voltage V1 are selected. ε1

and ε2 are the state variable errors of iL1 and V1, which forms a sliding surface equation

S(iL1, V1) = K1ε1 +K2ε2 = 0 (2.1)

The value is input to a hysteresis block H1 and generate the switching signals S1 and S2.

2.2 VSC Applications

VSC has various applications in microgrid and HVDC fields, which will be discussed as follows.

8
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Figure 2.2. Configuration of Direct Power Controller [3].

 

Figure 2.3. Configuration of Sliding Mode Controller [9].
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2.2.1 Microgrid Applications

2.2.1.1 VSC Interfaced Battery

Microgrid is an important technology to integrate distributed energy resources, including wind

turbines, solar photovoltaic panels and energy storage devices such as battery [12, 13, 14, 15, 16].

A microgrid can either operate at the grid connected or autonomous modes [17, 18].

At autonomous modes, voltage and frequency should be supported by a microgrid itself, usually

through synchronous generators. For a microgrid without synchronous generators, the system

voltage and frequency would be difficult to maintain without the support of the ac grid. One

solution is to use a VSC controlled by a pulse width modulation (PWM) scheme to provide voltage

and frequency control [19]. A battery is interconnected to a grid through a VSC and hence batteries

can improve the operation of microgrids through VSC control. In [19, 20, 21], battery systems are

applied to restore system voltage and frequency quickly (several cycles). In practice, applications

of battery storage system for grid frequency regulation have been deployed in [22], the maximum

capacity has reached 20MW.

For microgrids operating at grid-connected modes, VSCs of battery systems can work at power

control mode. Depending on the state of charge (SOC) of battery and active power requirement

by the microgrid, a battery may operate at either charging or discharging condition. The VSC

connected between the battery and the microgrid regulates power flow only and does not participate

in system frequency control. In [23] and [24], applications of battery energy storage systems in grid

power balance at grid-connected modes are demonstrated.

Research work has been conducted on development of control strategies for batteries in micro-

grids [17, 18, 19]. An ideal dc voltage source is assumed for a battery. In reality, a battery has

operation limits. For example, the SOC cannot be lower than a threshold; the Depth of Discharge

(DOD) may affect the life time of a battery [22]. Therefore, there is a need to model a battery

adequately and develop control strategies based on the adequate battery model with battery status

information collected.
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Detailed battery models have been developed in the literature. In [25], a battery model is

described by partial differential equations. [13] adopted the same model to simulate a wind farm

with a Lead-acid battery system. From [22], a Li-ion battery has been a suitable choice for high

power application due to breakthroughs on materials. Reference [26] describes a detailed Li-ion

battery model with parameters and has verified the validity through experiments. Though the

battery studied in [26] is for a low voltage level, serial and parallel connections could make a high

voltage and high power battery matrix possible, which could be used in power system [27].

2.2.1.2 VSC Interfaced PV Station

PV model has been investigated thoroughly in the literature. The current source and anti-

parallel diode model has been proved to be able to simulate the V-I characteristics of a solar

cell accurately. For the PV and battery combined systems, [28] proposed a power management

mechanism that could optimize the power flow. [29] utilizes batteries to reduce the fluctuations

of PV output. [30] presents the power scheduling within PV and battery system from the power

system’s point of view. Besides the PV and battery combined system, PV and capacitor combined

system is also examined by [31, 32, 33]. Capacitors are also could be used to reduce the power

fluctuation of PV, or participate in frequency control.

2.2.1.3 Harmonics Reduction with VSC

Harmonic currents due to power electronics switching have been widely investigated in the

literature. Active filter is a mature solution to mitigate the harmonic currents [34, 35, 36, 37].

The current control strategies are discussed and compared in [38], which include linear current

control, digital deadbeat control and hysteresis control. The linear current control utilizing dq

synchronous frame control has been proposed and tested [34, 35, 39, 40]. Another control method

developed in [40, 41] is called Proportional-Resonant (PR) controller. With PR control theory,

the complexity of harmonic current control system can be effectively reduced for both positive and

negative sequences. Uncontrolled power electronics devices with load can produce non-negligible

low orders harmonic currents to microgrid. In [42], even small percentage of grid voltage unbalance
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would lead to additional high 3rd order harmonic currents from rectifiers. In order to eliminate the

harmonic currents, a appropriate control strategy has to be developed.

2.2.2 VSC-HVDC Applications

2.2.2.1 LCC-HVDC vs VSC-HVDC

The first modern commercial HVDC transmission project was built between Gotland and main-

land Sweden in 1954 [43]. The power capacity was 10-20 MW, and was constructed based on

Thyristor-based line-commutated converters (LCC), which require external circuit to force the cur-

rent to zero and turn them off. The technology is mature and widely used nowadays. LCC-HVDC

is suitable for long distance bulk power transmission since the major LCC valves, thyristors, are

reliable and with high power capability. The longest HVDC project reported is the Xiangjiaba-

Shanghai 2,071 km (1,287 mi) 6400 MW link connecting the Xiangjiaba Dam to Shanghai, in China

[44].

The VSC-HVDC was introduced when high power IGBTs were available for use. The advantage

of a VSC-HVDC comparing to LCC-HVDC include: much less harmonics thus large size filters are

not required; reactive power supply capability; and multi-terminal applications. The IGBT could

turn on or off depends on the voltage signal applied on the gate port, thus the PWM is utilized to

control the converters. Therefore, the magnitude and phase of the output voltage are both fully

controllable. Therefore, VSC could compensate reactive power to the grid, to support ac voltage

stability. Due to the fully controllability of output voltage, the power flow within VSC-HVDC

is fully controllable as well, which enables flexible power flows between grids. Since there is no

ac voltage source required to operate like the LCC HVDC does, the VSC-HVDC could support

passive network, which is ideal for remote loads and renewable energies integration. An undergoing

VSC-HVDC project is the 165 km, ±320 kV and 800 MW connection between DolWin Alpha and

Dörpen/West in Germany [45].

The comparison of LCC-HVDC and VSC-HVDC is listed in Table 2.1.
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Table 2.1. Comparison of LCC-HVDC and VSC-HVDC

LCC-HVDC VSC-HVDC

Converter Technology Thyristor based IGBT based

Voltage Polarity Both Does not change

Current Direction Does not change Both

Turn On Controllable Controllable

Turn Off Rely on external circuit Controllable

Power Capacity Higher Lower

ac System Requirement Strong Strong and weak

Reactive Power Requirement Yes No

Station Losses Lower Higher

Cost Lower Higher

Reliability Higher Lower

Technology More mature Less mature

2.2.2.2 Multi-terminal VSC-HVDC

One of the advantages of VSC-HVDC transmission is the multi-terminal topology, which is easy

to be implemented. This feature could benefit the grid integration of offshore wind farms, since

the physical distance of each wind farm could be far and the grid integration station may have

only few choices. The multi-terminal VSC-HVDC system could integrate several wind farms to

one or multiple grid side converter stations, which provides high flexibility for power planning and

construction [46, 47].

Depending on the topology of multi-terminal VSC-HVDC, the control objective of each con-

verter station varies. When the multi-terminal VSC-HVDC is used to integrate offshore wind farms

to grid, the rectifier stations usually operates in passive network support mode, i.e., the magnitude

and frequency of ac output voltage of the converters will be controlled. Regarding the inverter sta-

tion that connecting to the ac grid, the major control objective is to regulate the dc voltage, which

ensures the active power generated from wind farms could be delivered to the grid to maintain

power balance. In the case of multiple inverter stations, power droop control strategy should be

implemented to dispatch the active power to each station.
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In the case of connecting between grids instead of integrating wind farms, the rectifier stations

usually operate in power control mode, which regulate active and reactive power transfer. However,

the inverter stations work in the same mode: dc voltage control mode.

Operation of multi-terminal VSC-HVDC (MHVDC) has appeared in the literature. E.g., [48]

described the operation of a MHVDCs operation when one of the inverters is lost. The dc voltage

will have a spike which can cause damage to power electronic devices. Fast blocking rectifiers and

following up with a power balancing scheme among the rest of the converters will solve the problem.

MHVDC has also been proposed to deliver wind power. In [49], a multi-terminal VSC-HVDC

system is proposed to integrate synchronous generator based offshore wind farms. The generator

side converter control keeps the ac voltage constant and regulates the dc current based on wind

speed. In [50], a four terminal MHVDC with two rectifier converters and two inverters is modeled

in MATLAB/SimPowersystems. The control modes of the converters are described and tested for

wind speed change in the paper. [51] presents two three-terminal MHVDC topology, control and

normal system operation. System responses under fault scenarios have not been investigated.

2.2.2.3 VSC-HVDC Modeling

Several methods to derive the VSC model have been developed including averaging circuit

analysis, small signal analysis and computer aid system identification. [52, 53, 54, 55] derived the

VSC models based on averaging methods. The nonlinear IGBT switches are modeled as averaged

voltage source, which are applied in the KV L and KCL equations while plugging in other system

parameters. [56, 57] obtained the VSC-HVDC model via small signal analysis. A set of linearized

fundamental converter equations was developed and combined with other system components, an

eigenvalue analysis was conducted to determine the stability limitations. [58] obtained a trans-

fer function representation of a fuel cell with its converter. The authors applied a step change

on load and recorded the response on output voltage of fuel cell. The results were imported to

MATLAB/Simulink System Identification Toolbox and a transfer function between load current

and fuel cell voltage was estimated via various estimation algorithms. [59, 60, 61] proposed similar

approaches to estimate a model representation of dc-dc converters.
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Figure 2.4. Impedance model of VSC and grid.

In order to study the stability issues of VSC, [62] developed an impedance model of VSC between

wind turbines and the grid, which also included the detail modeling of Phase Lock Loop (PLL). An

active damping controller was proposed to eliminate the resonance at 3rd and 4th harmonics. The

approach Sun used [62] was to derive an impedance model of VSC with its respectively controller,

which is called Zp(s) and Zn(s) corresponding to the positive and negative components. The grid

is represented by a combination of voltage source and impedance called Zg(s). Fig. 2.4 shows the

impedance model representation of VSC and grid. Nyquist criterion was applied to examine the

stability of system based on
Zg(s)
Zi(s)

. [63] applied the similar technique to derive an impedance model

and analyzed the stability issues.

Instead of using PLL, [64] proposed a power synchronization control to replace PLL, which

avoids the instability caused by PLL especially in weak ac system condition. [65] investigated the

models of VSC-HVDC connecting two very weak ac systems in detail. The model obtained which

is called Jacobian transfer matrix has a Right-Half-Plane (RHP) zero that moves closer to the

origin with larger load angles. Consequently, stability analysis was performed with the obtained

model, and concluded that the RHP zero limits the bandwidth of VSC, which implies the converter

stations shall not operate with too large load angles, and a higher dc capacitance is necessary to

keep the dc voltage stable.
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2.3 Summary

The dissertation has an opportunity to conduct research on the following issues since they have

not been investigated in the literature.

1. Battery inverter control during microgrid transients

2. How to use battery inverter for power quality improvement in microgrids at distribution level

3. Comprehensive modeling of entire VSC-HVDC system (ac + dc modeling) to identify stability

limits
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CHAPTER 3

MODELING OF A MICROGRID WITH BATTERY CONNECTED

3.1 Introduction

In this chapter, the modeling of a microgrid with battery connected will be introduced [66].1

Microgrid is an important technology to integrate distributed energy resources, including wind

turbines, solar photovoltaic panels and energy storage devices such as battery [12, 13, 14, 15, 16].

A microgrid can either operate at the grid connected or autonomous modes [17, 18].

At autonomous modes, voltage and frequency should be supported by a microgrid itself, usually

through synchronous generators. For a microgrid without synchronous generators, the system

voltage and frequency would be difficult to maintain without the support of the ac grid. One

solution is to use a VSC controlled by a PWM scheme to provide voltage and frequency control

[19]. A battery is interconnected to a grid through a VSC and hence batteries can improve the

operation of microgrids through VSC control. In [19, 20, 21], battery systems are applied to restore

system voltage and frequency quickly (several cycles). In practice, applications of battery storage

system for grid frequency regulation have been deployed in [22], the maximum capacity has reached

20MW.

For microgrids operating at grid-connected modes, VSCs of battery systems can work at power

control mode. Depending on the SOC of battery and active power requirement by the microgrid, a

battery may operate at either charging or discharging condition. The VSC connected between the

battery and the microgrid regulates power flow only and does not participate in system frequency

control. In [23] and [24], applications of battery energy storage systems in grid power balance at

grid-connected modes are demonstrated.

1This chapter was published in Power and Energy Society General Meeting, 2012 IEEE, vol., no., pp.1,8, 22-26
July 2012. Permission is included in Appendix B.
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Research work has been conducted on development of control strategies for batteries in micro-

grids [17, 18, 19]. An ideal dc voltage source is assumed for a battery. In reality, a battery has

operation limits. For example, the SOC cannot be lower than a threshold; the DOD may affect the

life time of a battery [22]. Therefore, there is a need to model a battery adequately and develop

control strategies based on the adequate battery model with battery status information collected.

Detailed battery models have been developed in the literature. In [25], a battery model is

described by partial differential equations. [13] adopted the same model to simulate a wind farm

with a Lead-acid battery system. From [22], a Li-ion battery has been a suitable choice for high

power application due to breakthroughs on materials. Reference [26] describes a detailed Li-ion

battery model with parameters and has verified the validity through experiments. Though the

battery studied in [26] is for a low voltage level, serial and parallel connections could make a high

voltage and high power battery matrix possible, which could be used in power system [27].

The objective of this chapter is to develop control strategies for a battery system to improve

operation of a microgrid. The control strategies will not only provide system requirements but also

take safe operation of a battery into consideration. A comprehensive model for a microgrid without

synchronous generators, with a battery system, an induction machine and passive loads will be built

in PSCAD/EMTDC. Control strategies will be developed and verified through simulation studies.

3.2 A Microgrid With a Battery and an Induction Generator

3.2.1 System Topology

This chapter investigates a microgrid consisting of two distributed energy resources (DERs).

One is an induction generator driven by a bio-diesel machine (12 MW) and the other one is a

battery (2 MWh). A strong ac grid is feeding the microgrid via a 69/13.8 kV transformer.

Three passive RLC loads are put into the microgrid to simulate the customer power consump-

tion. Load 1 is located at Bus A close to the grid-connected transformer. Load 2 is located at

the site of a diesel engine induction generator. Load 3 is connected at the output terminal of the

battery system. Two 13.8 kV distribution lines based on the IEEE Standard 399-1997 [67] are also

included in the model. The topology of the study system is shown in Fig. 3.1.
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Figure 3.1. A microgrid with a battery system.

The study system is built in PSCAD/EMTDC. The battery system is modeled in detail. It

consists of two battery groups in series, and each group has an open circuit dc voltage at 4.1kV.

The peak active power output is 2MW for each group, and the capacity is 240Ahr, which implies

that each battery group could inject a maximum 2 MW into the microgrid for 30 minutes.

The system parameters are listed in Table 3.1. At the grid-connected mode, the induction

machine generates 8.9 MW active power, while the active power output command of the bat-

tery system is 0 MW. The microgrid absorbs 0.8MW active power from the main grid. At the

autonomous mode, the battery system is expected to deliver 0.8MW to the microgrid since the

supply from the main grid now is lost. The adjustment of active and reactive power generation

from the battery will be achieved through inverter control.

3.2.2 Battery Model

The battery model includes two parts based on [26]. One part is the energy model and the

other part is the circuit model as shown in Fig. 3.2.

The resistors and capacitors in the circuit model are used to emulate the dynamic responses of

a battery. The parameters of the battery model have been verified through experimental results

[26]. However, the battery model of [26] has a low voltage (4.1V) and small capacity (850mAhr).
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Table 3.1. Simulation system parameters

Quantity Value

ac grid voltage 69kV (L-L RMS)

Transformer 1 13.8kV/69kV, 20MVA, leakage 8%pu

Transformer 2 13.8kV/3.3kV, 10MVA, leakage 10%pu

Load 1 2.521MW+0.831MVar at 13.8kV

Load 2 4.994MW+1.029MVar at 13.8kV

Load 3 2.5MW+0.822MVar at 13.8kV

Distribution line 1 980ft, (0.044+j0.0359)ohm

Distribution line 2 1187ft, (0.052+j0.0436)ohm

Distribution line 3 1187ft, (0.052+j0.0436)ohm

Table 3.2. Induction machine parameters

Quantity Value

Rated RMS phase voltage 8kV

Rated RMS phase current 0.5kA

Base angular frequency 60Hz

Stator resistance 0.066pu

First cage resistance 0.298pu

Second cage resistance 0.018pu

Stator unsaturated leakage reactance 0.046pu

Unsaturated magnetizing reactance 3.86pu

Rotor unsaturated mutual reactance 0.122pu

Second cage unsaturated reactance 0.105pu

Polar moment of inertia 1.0s

Mechanical damping 0.0001pu
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For the battery used in the study system, we assume each battery group is constructed by 1000

individual pieces connected in series, and 70 in parallel. The voltage and current balance problems

are neglected for the battery matrix. The total dc voltage from one battery group is 4.1kV and the

total capacity is 240Ahr.

Fig. 3.2 shows the battery model [26].
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capacity

I batt

Vsoc

V
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C
)

Rseries Rtrasient_s
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Ctrasient_l
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Figure 3.2. A detailed battery model [26].

Equation 3.1 gives the current and voltage relationship for the battery life time model, which

is the left part in Fig. 3.2.

Ccapacity
dVsoc
dt

+
Vsoc

Rself discharge
+ Ibatt = 0 (3.1)

Normally, the self-discharge resistor is very large and could be neglected. Hence, equation (3.2)

could be derived to express the relationship between the battery output current and the SOC.

Vsoc = − 1

Ccapacity

∫
Ibatt dt+ Vsoc(0) (3.2)

By setting the initial value of Vsoc(0) equal to 1V or 0V, the battery is initialized to fully charged

or fully discharged. And the output current of battery will then either charge or discharge the bat-

tery by varying the value of Vsoc depending on the external conditions. The full-capacity capacitor

Ccapacity is a function of the battery capacity, charging and discharging cycles, and temperature.

The expression of Ccapacity is shown in equation 3.3.

Ccapacity = 3600 · Ccapacity · f1(Cycle) · f1(Temp) (3.3)
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Ccapacity will decrease in a considerable long time range comparing to the simulation period in

this chapter. Therefore, Ccapacity is assumed to be constant in this chapter.

The circuit in the right part of Fig. 3.2 describes the output voltage and current characteristics

of the battery. The open circuit voltage Voc is a function of SOC as follows [26]:

Voc = −1.031 · e−35·Vsoc + 3.685 + 0.2156 · Vsoc

−0.1178 · V 2
soc + 0.3201 · V 3

soc

(3.4)

Fig. 3.3 is the graphic representation of the relationship between the open-circuit voltage and

the SOC. It is observed that the voltage would rise at charging mode and would decrease in

discharging mode.
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Figure 3.3. The relationship between open-circuit voltage and SOC [26].

η =

dischargeendtime∫
0

vb · ib dt

chargeendtime∫
0

vb · ib dt
(3.5)

Another critical parameter of a battery is round trip efficiency, which is the ratio of the energy

coming out from the battery and the energy that been charged into the battery. The round trip
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efficiency can be calculated by equation (3.5), where vb and ib are the voltage and current measured

at the battery dc terminal. Based on the curve in Fig. 3.4, the round trip efficiency is 98.14%.

In Fig. 3.4, the charger dc voltage is 4.1kV, the source resistant Rs is 0.2ohm. Switch S1 is kept

closed until SOC reaches 1. Once the SOC of the battery reaches 1, switch S2 will be closed, the

load resistance is 8ohm.
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Figure 3.4. Part I: Round trip efficiency test of battery.

3.3 VSC Controls

Three control modes are considered for the battery: Power control, dc-link voltage control and

voltage/frequency control. The former two modes can be used when the microgrid is grid-connected.

The third control mode is applied when the microgrid is at its autonomous mode and there is no

synchronous generator.

The control system of a VSC consists of two loops: inner current control loop and outer control

loop. The outer control loop can be either active power control loop or dc-link voltage control loop

when the microgrid is grid-connected. When the battery is supplying a standalone microgrid, the

outer control loop will be switched to ac voltage and frequency control. The control loop diagram

is presented in Fig. 3.6 and Fig. 3.8.
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3.3.1 PQ Control and dc-link Voltage Control

Two charging or discharging strategies could be applied. One is constant dc-link voltage charg-

ing and the other is constant power charging. A decoupled d-q direct current control strategy has

been developed in [2, 68]. Fig. 3.5 shows an equivalent model of a VSC inverter connected with ac

sources.

dc

a

c

b
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b1

c1

a

b

c

dc dc2

Figure 3.5. Equivalent model of a battery connected with ac sources.

Variables in the abc system in the above circuits can be transformed into a synchronous reference

frame. The voltage and current relationship is shown in (3.6) and (3.7), where ωs is the angular

frequency of ac system, vd, vq, vd1, and vq1 represent the d and q components of the point of

common coupling (PCC) voltage (Va, Vb, Vc)and VSC output voltage(Va1, Vb1, Vc1), respectively,

and id and iq represent the d and q components of the current flowing between the ac system and

the VSC.

vd1 = −(Rid + L
did
dt

) + ωsLiq + vd (3.6)

vq1 = −(Riq + L
diq
dt

)− ωsLid (3.7)

The decoupled current control is shown in Fig. 3.6.

vdc(C
dvdc
dt

+ idc2) = vdid →
vdc
dt

=
vdid
vdcC

− idc2
C

(3.8)
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dc voltage control is based on the balance of active power flow between the battery and the

main grid as shown in (3.8). Apparently, the dc voltage can be regulated by the d axis current

through a PI controller.

It is obvious from the relationship of the open-circuit voltage Voc and SOC that the dc-link

voltage tends to fall while the battery is discharging.

For constant power mode, the outer control loop will regulate the power. The only difference

between a normal charging mode and a normal discharging mode is the power order is in different

polarity.

In addition to the control strategy presented in Fig. 3.6, an upper level control scheme should

be included to monitor SOC and protect the batteries. Fig. 3.7 shows the upper level control

scheme, as long as the SOC is greater than minimal allowable value, the battery would continue

operating at PQ mode. Otherwise, it should be disconnected, and more active power should be

delivered from the main grid in order to keep power balance.
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Figure 3.6. Normal charging and PQ control strategy.
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Table 3.3. PI controller parameters of Fig. 3.6

Kp Ki

P control loop 2 10

Q control loop 2 10

dc voltage control loop 1 20

ac voltage control loop 1 20

Id control loop 1.5 100

Iq control loop 1.5 100

SOC > 

SOCmin

Disconnect 

battery

Require more 

power from 

main grid

Continue at 

PQ mode

End

No

Yes

Figure 3.7. Upper level control considering SOC.
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3.3.2 Voltage and Frequency Control

At autonomous modes, the microgrid is disconnected from the main ac grid and there is no

synchronous generator to support system voltage and frequency. One advantage of VSC is its

passive network supplying capability. In this study system, the VSC interfaced battery could

support the microgrid’s voltage and frequency by switching to ac voltage and frequency control.

The basic control principles are based on decoupled current control [18, 69]. However, under steady-

state and neglecting resistance R, (3.6) and (3.7) can be rewritten as (3.9) and (3.10) [20, 21]:

Vd1 = ωsLIq + Vd (3.9)

Vq1 = −ωsLId (3.10)

PI controllers can be used to control the d and q axis components of the PCC voltage respec-

tively. Fig. 3.8 depicts the ac voltage control strategy. The PCC three-phase voltages are measured

and transformed into a d − q reference frame, which is vd and vq in Fig. 3.8 respectively. Three-

phase currents flowing between the loads and the inverter are measured and transformed to id and

iq respectively. With the comparisons of the dq voltages to their respective references, the resulting

errors are sent to the PI controllers to generate the required output voltage of the VSC.

PI
vd_ref

vd

PI

0

vq

-

-

sL

sL

iq

id

-

dq

abc
oscillator60Hz vabc

Figure 3.8. ac voltage control strategy of inverter.

The frequency of the ac voltage which supplies passive loads is also controlled by the VSC.

An internal oscillator is used to generate the angle θ, which is used as the input of dq to abc
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Table 3.4. PI controller parameters of Fig. 3.8

Kp Ki

Vd control loop 3 2

Vq control loop 3 10

transformation and ensures the frequency of output voltage is kept at 60Hz if PWM scheme applied

[70].

A similar upper level SOC monitoring and battery protection scheme should be available when

the batteries are working at islanding control mode. Fig. 3.9 shows the upper level control strategy

at islanding modes. If the SOC is greater than the set point, the battery should operate at islanding

mode and provide active power to the microgrid. Once the SOC reaches the pre-set point, the

battery should be disconnected at the dc side to protect itself and the microgrid. The interfacing

inverter can still work along with the dc link capacitor to provide a constant voltage with constant

frequency. Once the battery is disconnected, there is no more active power could be injected into

the microgrid. Therefore, in order to maintain stable frequency, load shedding is used to keep the

active power balance.

3.4 System Evaluation in PSCAD/EMTDC

Simulation studies on the system in Fig. 3.1 are carried out in PSCAD/EMTDC. Two experi-

ments are conducted to investigate not only the behaviors of batteries but also the overall system

performance. The first experiment is to examine the power support capabilities of the battery with

an ac grid connected. The second experiment investigates the system performance without any ac

grid support. System voltage and frequency behaviors are analyzed.

One battery matrix consists of 7000 pieces of 4.1V small batteries, which form an equivalent

battery of 4.1kV, 240Ah. Since the nominal voltage at ac side of inverter is 3.3kV, two battery

matrixes in series are applied, which could supply 8.2kV at dc side.
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SOC > 

SOCmin

Disconnect 

battery

Load 

shedding

Continue at 

islanding 

mode

End

No

Yes

Figure 3.9. Upper level control scheme of islanding mode.
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3.4.1 Power Support to the Microgrid from the Battery

In the first experiment, the study system in Fig. 3.1 is simulated at the grid-connected mode.

The active power command of the battery system is to absorb 2MW before 10s, and then to send

0.5MW after 10s. At 15s, the active power command changes to absorbing 1MW.

Fig. 3.10 shows the active and reactive power delivered from the battery. The active power

output is smooth and stable. The transition is fast and smooth. The reactive power reference is

kept at 0 MVar. Variation in the reactive power is shown in Fig. 3.10(b). Fig. 3.10(c) shows the

dynamic response of the battery current. Fig. 3.10(d) shows that the battery voltage decreases

from 10s to 15s since the battery is sending out active power, while it is rising after 15s because of

charging.
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Figure 3.10. Performance of the battery at
PQ mode.

14.5 15 15.5 16 16.5 17
0

2

4

6

8

10

12

14

16

18

Time (s)

(a) PCC RMS voltage

V
ol

ta
ge

 (
kV

)

14.5 15 15.5 16 16.5 17
35

40

45

50

55

60

65

Time (s)

(b) Microgrid frequency

F
re

qu
en

cy
 (

H
z)

Figure 3.11. System behavior after islanding
without control mode switching.
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3.4.2 Voltage and Frequency Support to an Islanding Microgrid

When the microgrid loses its connection to an ac grid, the battery and its inverter system

should switch to the ac voltage and frequency control mode as shown in Fig. 3.11. Without control

mode switching, the frequency and the voltage of the microgrid will oscillate and lose stability. Fig.

3.11 illustrates the frequency and voltage responses following the grid disconnection at 15s without

control scheme switch. The inverter still works at PQ control mode. The frequency and voltage

oscillate dramatically and drop to a very low level. The microgrid can no longer operate.

Therefore, it is necessary for the inverter to transit to ac voltage and frequency control mode

after an islanding event. Furthermore, since the battery is not an ideal dc voltage, the upper level

control scheme in Fig. 3.9 should also be implemented.

3.4.2.1 During Islanding Transient Response

At 14.97s, the ac grid is disconnected by a switch to emulate the beginning of an islanding event

of the microgrid. The islanding event is detected after 30ms, the required detection time is selected

based on [71, 72], in which the range of detection time is from 20ms to 40ms. Subsequently the

control system of inverter transits to ac voltage and frequency control mode at 15s.

Fig. 3.12(a) shows the PCC RMS voltage during the islanding process. Significant voltage sag

occurs when the main grid is disconnected. However, after the control scheme transits to islanding

mode, the voltage returns to the nominal value. Fig. 3.12(b) shows the frequency response at PCC.

Similar to the PCC voltage, a deviation is followed by the disconnection of main grid. However,

the frequency returns to 60Hz as desired after the islanding control mode triggered. The maximum

frequency deviation is less than 1Hz.

These dynamic responses confirm the ac voltage and frequency support capabilities introduced

by the inverter and battery. Fig. 3.12(c) shows that the terminal voltage of one battery group is

dropping since it is responsible for the active power support after islanding. The battery current

is shown in Fig. 3.12(d). The system frequency is fully controlled by the battery. Fast current

regulation is expected as Fig. 3.12(d) shows. Meanwhile, the SOC keeps dropping since the battery

is discharging as shown in Fig. 3.12(e).
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Figure 3.12. System behavior during island-
ing.

Figure 3.13. Performance of induction ma-
chine during islanding.
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Fig. 3.13 shows the dynamic responses of the induction machine during islanding. Oscillations

occurred both on induction machine speed and torque. However, with the help of the battery

system, they return to pre-fault value and remain stable.
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Figure 3.14. Performance of the microgrid
with load changing after islanding.
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Figure 3.15. Performance of the IM with load
changing after islanding.

3.4.2.2 Increase and Decrease in Loads

In order to validate the voltage and frequency regulation capabilities of the inverter and batteries

after an islanding event, two load change scenarios are implemented.

At 30s, one load at the rating of 0.5MW and 0.164MVar is switched on. Fig. 3.14 shows the

responses of battery output power and the microgrid frequency. The active power output of the

battery increases 0.5MW instantaneously while there are transients in frequency. The microgrid

frequency has a transient decrease (0.04 Hz) due to the increase of loads.

33



www.manaraa.com

Load shedding is applied to evaluate the control system, which is shown in Fig. 3.14(d) and

(e). At 40s, one load at the rating of 1.292MW and 0.356MVar is switched off, which simulates a

load shedding. The batteries switch from a discharging state to a charging state. The frequency

has a transient increase (0.12 Hz maximum) due to load shedding.

An induction generator driven by a bio-diesel machine is included in the microgrid. Fig. 3.15

demonstrates the performance of induction machine in the autonomous microgrid. A damped

oscillation is occurred both on induction machine speed and torque. However, with the help of the

battery system, they return to pre-fault value and remain stable. From Fig. 3.15, it is clear that

the battery system could take the responsibility to regulate the power balance without adjustment

on induction machine.
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CHAPTER 4

COORDINATED CONTROL OF A SOLAR AND BATTERY SYSTEM IN A
MICROGRID

4.1 Introduction

The objective of this chapter1 is to study the control strategies for a microgrid with both a

battery group and a PV array [73]. The study approach is detailed model based simulation. Detailed

battery models have been described in Chapter 3. PV model has been investigated thoroughly in the

literature. The current source and anti-parallel diode model has been proved to be able to simulate

the V-I characteristics of a solar cell accurately. For the PV and battery combined systems, [28]

proposed a power management mechanism that could optimize the power flow. [29] utilizes batteries

to reduce the fluctuations of PV output. [30] presents the power scheduling within PV and battery

system from the power system’s point of view. Besides the PV and battery combined system, PV

and capacitor combined system is also examined by [31, 32, 33]. Capacitors are also could be used

to reduce the power fluctuation of PV, or participate in frequency control.

The above mentioned research work have focus on the grid-connected mode operation. The

focus of this chapter is control strategies at the autonomous mode. The research was conducted

on developing battery operating strategies based on a detailed battery model at both the grid-

connected and the autonomous mode. The research results were summarized in Chapter 3. In this

chapter, the research is expanded to include a PV array in the microgrid. Coordination among

different DERs will be taken into consideration.

1This chapter was published in Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE
PES, vol., no., pp.1,7, 7-10 May 2012. Permission is included in Appendix B.
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4.2 A Microgrid With a Battery, a PV Array and an Induction Generator

4.2.1 System Topology

The microgrid studied in this chapter consists of three DERs. An induction machine driven by a

diesel engine works at the generating mode. It supplies active power to the loads within microgrid.

A PV array is connected to the microgrid and supports the loads as well. A VSC interfaced battery

station is included to store excess energy from the PV array or inject energy when there is a need.

Fig. 4.1 shows the topology of the investigated microgrid where three distribution lines are used

to connect each component. The topology complies with the IEEE Standard 399-1997 [67].

Line 1
Load 1

IM

Load 2

Line 2

Load 3

AC

DC

GridTransformer 1

Transformer 2

A

PCC
Battery

Line 3

AC

DC

PV
DC

DC
Transformer 3

Line 4

PV+Battery 
System

Figure 4.1. System topology.

The microgrid is built in PSCAD/EMTDC with all DERs are modeled in details. The battery

station consists of two groups connected in series. Each group has an equivalent open circuit dc

voltage at 4.1 kV. The maximum active power capability of which is 2MW for each group, and the

energy capacity is 500kWh, which means the whole battery station could inject 4MW active power

to the microgrid for 15 minutes.

The PV array consisted of many small PV panels, which could build up an open circuit dc

voltage to 6 kV for the whole array. The short circuit dc current under nominal insolation level

is set to 1 kA. The PV array is connected to a dc/dc converter, which is controlled by Maximum
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Power Point Tracking (MPPT) algorithm. A dc/ac inverter which utilizes IGBTs connects the

dc/dc converter to the microgrid.

An induction machine which runs on the generator mode is included in the microgrid. It is

driven by a diesel engine. The nominal phase voltage and current are 8kV and 0.5kA respectively.

Some other system parameters are listed in Table 4.1.

Table 4.1. Simulation system parameters

Quantity Value

ac grid voltage 69kV (L-L RMS)

Transformer 1 13.8kV/69kV, 20MVA, leakage 8%pu

Transformer 2 13.8kV/3.3kV, 10MVA, leakage 10%pu

Transformer 3 13.8kV/3.3kV, 10MVA, leakage 10%pu

Load 1 2.521MW+0.831MVar at 13.8kV

Load 2 4.994MW+1.029MVar at 13.8kV

Load 3 2.5MW+0.822MVar at 13.8kV

Distribution line 1 980ft, (0.044+j0.0359)ohm

Distribution line 2 1187ft, (0.052+j0.0436)ohm

Distribution line 3 1187ft, (0.052+j0.0436)ohm

Induction machine ratings 8kV (phase voltage), 0.5kA(phase current)

PV ratings 6kV, 1kA

Battery ratings 8.2kV, 120Ahr

Table 4.2. Induction machine parameters

Quantity Value

Rated RMS phase voltage 8kV

Rated RMS phase current 0.5kA

Base angular frequency 60Hz

Stator resistance 0.066pu

First cage resistance 0.298pu

Second cage resistance 0.018pu

Stator unsaturated leakage reactance 0.046pu

Unsaturated magnetizing reactance 3.86pu

Rotor unsaturated mutual reactance 0.122pu

Second cage unsaturated reactance 0.105pu

Polar moment of inertia 1.0s

Mechanical damping 0.0001pu
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4.2.2 Battery Model

The battery model that built in PSCAD/EMTDC includes two parts [26]. One part is the

energy model and the other part is the circuit model. The detailed modeling of this battery is

described in Chapter 3.

4.2.3 PV Model

The PV model is built based on well-known PV models in [74, 75, 76]. Generally, a PV array

consists of many solar cells with each solar cell represented by a current source. The output current

normally depends on sunlight and cell temperature. Practically, a solar cell can be modeled as a

current source with an anti-parallel diode. A parallel resistor Rsh could represent the leakage

current inside the cell, and a series resistor Rs could represent the conducting loss. Fig. 4.2 shows

a practical model of solar cell based on the introduction above.

Ipv
Id Ish

I

V

Figure 4.2. A solar cell model.

The basic equation that represents the relationship between the solar cell current I and voltage

V is given in (4.1), which implies the actual output current of a solar cell not only depends on

sunlight, but also depends on output voltage and other factors. In (4.1), Ipv is the internal current

generated by sunlight on solar cell, Io is the diode current, Ir is the leakage current through shunt
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resistor, and V and I are output voltage and current of the solar cell respectively. Some constant

values used in the equations and have shown in table 4.3. The diode saturation current Io can

be expressed by (4.2), where Eg is the band gap energy of semiconductor, Tn is the nominal

temperature which is 298 Kelvin in this chapter. Ion is the nominal saturation current and is

described by (4.3), where Isc and Voc are the short circuit current and open circuit voltage of solar

cell respectively, Vt is the thermal voltage, which is described by (4.5), where Ns is the number os

series connected cells in an array. The internal current generated by sunlight of solar cell can be

expressed by (4.4), where Ki is the short circuit current/temperature coefficient, and G is the solar

irradiation in W/m2 and Gn is the nominal solar irradiation.

I = Ipv − Io[exp(
q(V + IRs)

αKT
)− 1]− Ir (4.1)

Table 4.3. Parameters of solar cell

Quantity Value

q 1.6× 10−19C

K 1.38× 10−23J/K

α 1.5

Eg 1.2

Ki 1.141mA/K

Io = Io,n(
Tn
T

)3exp[
qEg
αK

(
1

Tn
− 1

T
)] (4.2)

Io,n =
Isc

exp( VocαVt
)− 1

(4.3)

Ipv = [Isc +Ki(T − Tn)]
G

Gn
(4.4)

Kt =
NsKT

q
(4.5)

Based on (4.1) - (4.5) and the parameters shown in Table 4.3, two graphs of the relationships

between current, voltage and power of solar cells could be obtained. Fig. 4.3 (a) shows the

relationship between output current and voltage of solar cell on different insolation levels, while
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Fig. 4.3 (b) shows the relationship between output power and voltage of solar cell on different

insolation levels. From those figures, generally, it is clear that current increases as the insolation

increases, and the behavior of power has similar characteristic as well. There is one maximum

power point for each insolation level, and it is desired for the operator that the maximum power

could always be extracted and injected into grid. This process normally called MPPT and could

be done by a dc/dc converter which will be elaborated later.
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Figure 4.3. Output characteristics of PV array by varying insolation level.

4.3 System Controls

Both battery and PV arrays are connected to grid via VSCs, and a dc/dc converter is also

utilized between the inverter and PV array terminals. Regarding the microgrid investigated in this

chapter, two operating modes are considered. The first operating mode is the grid-connected mode,

which means a strong ac grid is connected via a transformer and feed the microgrid. However, the tie

between microgrid and the strong ac grid may be disconnected due to some faults, and therefore,
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it is expected that the microgrid could be able to operate at the autonomous mode when such

faults occur. Since there is no synchronous generator existed in this microgrid, the voltage and

frequency will be supported by VSCs. As a result, depending on the operating mode of microgrid,

the VSCs could either operate at PQ control mode at grid-connected or voltage/frequency (Vf)

control mode when the microgrid is at autonomous mode. The control of PV arrays involves two

kinds of converters, one is dc/ac inverter, while the other is dc/dc converter. Since the active power

generated by PV array normally fluctuates as sunlight or other factors changes, it is not suitable

to ask the VSCs of which to operate on Vf control mode. Hence, the VSCs of PV arrays always

operate on PQ control mode, which implies that the VSCs should always deliver the active power

generated by PV arrays to grid, and inject the reactive power depends on the need of microgrid.

The dc/dc converter should extract the maximum power from PV arrays and send to the dc/ac

inverter, which could be achieved by MPPT algorithm.

4.3.1 Battery Control

The battery control details are described in Chapter 3 and will be ignored in this chapter.

4.3.2 PV Array Control

Fig. 4.4 depicts the structure of PV array and its dc/ac inverter and dc/dc converter. The

dc/dc converter is a boost converter, since the nominal dc-link voltage is 15kV which is always

larger than the PV array voltage. Therefore, the control system of PV array consists of two part,

which is VSCs control and dc/dc converter control.

PV

Grid

MPPT
Controller

Figure 4.4. PV array and its respective converters.
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4.3.2.1 PQ Control

The dc/ac inverter which consists of VSCs always operates at PQ control mode. Since the

active power generated by PV array depends on sunlight and temperature and is not stable as

conventional energy source. The VSCs should deliver the active power efficiently, otherwise the

dc-link voltage between inverter and dc/dc converter will deviate from its reference value and may

cause collapse.

4.3.2.2 MPPT Control

The critical control part of PV array is on dc/dc converter, which is expected to extract maxi-

mum power generated from PV array. There are several MPPT control algorithms in the literature

[77, 78, 79]. The perturbation and observation (P&O) method has been used throughout this

chapter. Basically, the operating points of reference voltage at different insolation level should be

obtained first, which can be completed based on Fig. 4.3. The reference voltages are then called

vmppt ref .

The control system measures the current output power of PV array and compare with the power

recorded at previous step. If the current power is greater than previous one, it will compare the

current output voltage with previous step. If the current voltage is larger, the reference voltage for

dc/dc converter will be added by a pre-set step, which is vmppt ref + C. The other control paths

are similar and just in opposite direction.

Fig. 4.5 depicts the duty cycle controller of dc/dc converter. The PV output voltage reference is

calculated from above P&O algorithm, and is compared with the current voltage. The error is the

input of a PI controller and the respective output is the duty cycle command for dc/dc converter,

which is then sent to the PWM generator.

Table 4.4. PI controller parameters of Fig. 4.5

Kp Ki

Duty cycle control loop 0.01 0.2
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PI+ −

Vmppt_ref

Vpv

PWM
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Figure 4.5. Duty cycle control of dc/dc converter.

4.3.2.3 Coordinated Control

Fig. 4.6 shows the power coordination mechanism of the PV and the battery system. ac grid

voltage and frequency are the variables to be controlled. The output real power and reactive power

of the battery system are dependent on the measured frequency error and voltage error. The total

output power from the PV and the battery should meet the requirement of the microgrid.

PV

PBattery

MPPT

+

Ppv

QBattery

+
Qpv

P, Q from 
PV-

Battery
System

+

+

Battery with vf 
control

Figure 4.6. Coordinated control strategy of PV and battery system at autonomous mode.
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4.4 System Evaluation in PSCAD/EMTDC

The studied microgrid is evaluated in PSCAD/EMTDC, which validates the efficiency of the

designed controller both on grid-connected and autonomous mode. The simulations conducted are

divided into two parts: 1) First, the microgrid operates on grid-connected mode, a strong ac grid

with nominal voltage at 69kV is connected to the microgrid via a 69kV/13.8kV transformer. The

battery is tested both on charging and discharging mode, and the PV array is tested for fast tracking

capability of insolation variations; 2) Second, a pre-assumed fault occurred and forced the main

breaker opened which disconnect the grid and microgrid. After certain period that is required

for the controller to detect the autonomous event, the control system switched to autonomous

control mode. The voltage and frequency of microgrid are monitored, which are proved that stay

at nominal value after short oscillations. Several scenarios are designed to test the control system

at autonomous mode, such as load increase, load shedding and insolation variations.

4.4.1 System Performance at Grid-connected Mode

During the simulation, the system is working at grid-connected mode before 15s. The battery

is first charged with a ramp increased reference power that dragged from ac grid. After that, the

battery starts to work at PQ control mode, the active power output changed from injecting 0.5MW

to absorbing 1MW. Meanwhile, the insolation level for the PV array changes from 1000W/m2 to

2000W/m2.

Fig. 4.7 shows the waveforms of system variables at such scenario. Fig. 4.7 (a) describes the

active power output of battery, which is increased from 0 to 2MW due to the ramp charging, and

the output changed from charging to injecting 0.5MW into grid at 10s, at 12.5s, the active power

reference changes to absorbing 1MW. Fig. 4.7 (b) shows the reactive power output of battery, which

is set to 0 at grid-connected mode. In this chapter, power flowing from the grid are considered

positive, while flowing into the grid are negative values.

The insolation level of PV is changed to test the controller of PV array and its converters. At

10s, the insolation level changes from 1000W/m2 to 2000W/m2, and Fig. 4.7 demonstrates the

waveform of respective active power output, which increases from 3.23MW to 6.02MW at the same
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time. The reactive power is set to absorbing 0.5MVar to the microgrid, which is shown in Fig. 4.7

(d).
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Figure 4.7. Power outputs of battery and PV at grid-connected mode.

4.4.2 System Performance at Autonomous Mode

At 14.97s, a pre-set fault is triggered which opened the breaker connecting microgrid and main

ac grid. This incident leads to voltage and frequency collapse since there is no synchronous gen-

erator existed in the microgrid to provide support. After 30ms [71], the controller detects the

islanding event and switches to autonomous control mode. At which, the controller of the VSCs

between microgrid and battery switches to Vf control, which supports the PCC voltage and system

frequency. Fig. 4.8 shows the transient behaviors, which indicates about 1.3kV voltage sag and

3kV overshoot occurred at PCC, and the frequency devastation is less than 1.5Hz and return to
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60Hz after 0.5s. The active power of PV and battery system have small and short oscillations when

breaker opened, and both return stable after around 0.5s. The transients of induction machine

have similar behaviors, and only the torque needs a little bit longer time to be damped. Two other

scenarios are performed to test the efficiency of designed controllers.
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Figure 4.8. System transient during islanding event.

4.4.2.1 Insolation Variations

The insolation level varies from 2000W/m2 to almost 0W/m2 at 35s to test the capability of

MPPT controller at autonomous mode. Fig. 4.9 (a) shows the waveform of active power from PV

array, where the active power reduced from injecting 6MW to almost 0. Fig. 4.9 (b) shows the

behaviors of battery, where the active power output of battery changes from absorbing 5MW to

generating 1MW due to the loss at PV side. The microgrid frequency stays at its nominal reference
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with only less than 0.5Hz drop at that transient. Fig. 4.9 (d) demonstrates that SOC is increasing

when absorbing power from microgrid and decreasing if injecting power. The response of induction

machine is similar with the case at islanding event occurred, since the power transition of PV side

is significant.
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Figure 4.9. System transient during insolation variations.

4.4.2.2 Load Variations

The load within microgrid may change at any time, in order to keep the power balance between

load and generation, the controller should be able to handle any load change within its capability.

Since the frequency is controlled by the VSCs of battery, it is expected that the battery should

take the responsibility to maintain power balance within the microgrid. Fig. 4.10 shows the system

behaviors during load variations, in which, one load at 0.5MW and 0.25MVar is added to the
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microgriid at 50s, and one load at 1.3MW and 0.5MVar is disconnected from the microgrid at 70s.

Fig. 4.10 demonstrates that the active and reactive power of battery are regulated to corresponding

value and maintain the stability. The active and reactive power of induction machine stay at its

reference value, since only the VSCs of battery participates Vf control, and it is desired to not

increase the induction machine output, which could save fuel as much as possible. In Fig. 4.10, the

microgrid frequency drops 0.1Hz at 50s due to load increase while rises 0.24Hz due to load shedding.

The induction machine runs smooth after short time oscillations corresponding load changes.
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Figure 4.10. System transient during load variations.
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CHAPTER 5

VSC BASED HARMONIC AND UNBALANCE MITIGATION FOR A
MICROGRID

Inductive load in a microgrid normally occupies a large portion of system capacity, however,

unfortunately, it is vulnerable to grid voltage unbalance. [80, 81] demonstrate the positive and

negative sequence circuits of induction machine. For high power induction machine, even very low

level of grid voltage unbalance may lead to very high percentage of unbalanced currents if the slip

is small. In order to prevent unbalanced currents flowing into utility grid, [82, 83, 84] proposed a

shunt connected VSC to inject compensation current with controller designed in dq synchronous

frame. Other than compensate unbalanced currents, STATCOM and D-STATCOM have been

widely used to compensate the unbalanced voltage at the PCC [85, 86, 87, 88, 89, 90].

Harmonic currents due to power electronics switching have been widely investigated in the

literature. Active filter is a mature solution to mitigate the harmonic currents [34, 35, 36, 37].

The current control strategies are discussed and compared in [38], which include linear current

control, digital deadbeat control and hysteresis control. The linear current control utilizing dq

synchronous frame control has been proposed and tested [34, 35, 39, 40]. Another control method

developed in [40, 41] is called Proportional-Resonant (PR) controller. With PR control theory,

the complexity of harmonic current control system can be effectively reduced for both positive and

negative sequences. Uncontrolled power electronics devices with load can produce non-negligible

low orders harmonic currents to microgrid. In [42], even small percentage of grid voltage unbalance

would lead to additional high 3rd order harmonic currents from rectifiers. In order to eliminate the

harmonic currents, a appropriate control strategy has to be developed.

Unbalanced current and harmonic current compensation normally need the installation of VSCs,

such as active filters. As discussed above, a microgrid with DERs always equipped with battery with
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inverters. Without investing in additional VSCs, the inverter of battery can take the responsibility

to not only charge/discharge but also compensate unbalanced and harmonic currents.

The objective of this chapter is to develop a control strategy for the inverter of a battery to

compensate unbalanced and harmonic currents under various grid voltage conditions.

5.1 System Configuration

The microgrid studied for this chapter consists of a PV station and a battery as the distribution

generation and storage devices respectively. An induction machine and a RL load with rectifier

are chosen as the customer load. The microgrid is connected with the main grid via a transformer.

Fig. 5.1 shows the topology of the studied system, while the parameters are listed in Table 5.1.

The battery station consists of two groups connected in series. Each group has an equivalent open

circuit dc voltage at 4.1 kV. The maximum active power capability of which is 1MW for each group,

and the energy capacity is 1MWh, which means the whole battery station could inject 2MW active

power to the microgrid for 1 hour.

The PV array consisted of many small PV panels, which could build up an open circuit dc

voltage to 2 kV for the whole array. The short circuit dc current under nominal insolation level

is set to 1 kA. The PV array is connected to a dc/dc converter, which is controlled by MPPT

algorithm. A dc/ac inverter which utilizes IGBTs connects the dc/dc converter to the microgrid.

The induction machine is used to simulate traditional customer load, which can also inject

significant negative sequence currents when it even subjects to a small percentage of unbalanced

system voltage. A simple RL load connected with rectifier can simulate the harmonic currents due

to uncontrollable power electronics devices.

Fig. 5.2 depicts the positive and negative sequence equivalent circuit of an induction machine.

Rs and Xs are stator resistance and reactance respectively, Rr and Xr are rotor resistance and

reactance referred to stator side respectively. Xm is the magnetizing reactance. Vp and Vn represent

the positive and negative sequences of voltage, while Ips, Ipr and Ins, Inr are the corresponding

currents. For the sake of simple analysis, the magnetizing reactance Xm is neglected. The positive

and negative sequence currents can be written as (5.1) and (5.2). It is clear that even a very low
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Figure 5.1. System topology of a microgrid.

Table 5.1. Simulation system parameters

Quantity Value

ac grid voltage 69kV (L-L RMS)

Transformer 1 69kV/13.8kV, 100MVA, leakage 8%pu

Transformer 2 13.8kV/3.3kV, 5MVA, leakage 10%pu

Transformer 3 13.8kV/3.3kV, 5MVA, leakage 10%pu

Transformer 4 13.8kV/2.4kV, 6MVA, leakage 10%pu

Induction machine ratings 2.4kV, 1.6MW

Battery ratings 8.2kV, 2MWhr

PV ratings 2kV, 2MVA

Load ratings 100ohm+500mH
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Figure 5.2. Induction machine positive and negative sequence equivalent circuit.

negative sequence voltage would induce a relatively high negative sequence current. For example,

if Rs = 0.3, Rr = 0.1, Xs = 0.5, Xr = 0.2, s = 0.01, Vp = 1.0, and Vn is only 2% of Vp, the resulting

negative sequence current is Ins = 0.0256, whereas, the positive sequence current is Ips = 0.0969.

The negative sequence current is 26.42% of positive sequence current although the negative sequence

voltage is only 2%. Therefore, when there is a small part of negative sequence voltage superposed

at PCC, the induction machine will inject significant unbalanced currents to the system.

Ips =
Vp√

(Rs + Rr
s )

2
+ (Xs +Xr)

2
(5.1)

Ins =
Vn√

(Rs + Rr
2−s)

2
+ (Xs +Xr)

2
(5.2)
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Figure 5.3. Induction machine current under 2% unbalanced grid voltage.

5.1.1 Consequence of Unbalance in Motor Loads

The consequence of unbalanced voltage applied in motor loads is demonstrated in Fig. 5.3,

which shows the induction machine currents. The system voltage contains a 2% negative sequence,

however, the magnitude of negative sequence is as high as 26% of the positive sequence component.

Such high magnitude negative sequence currents may cause severe problems to the end users, since

it may cause vibrations on machine, unstable rotating speed and noise. The power factor and

efficiency of machine may be worsen as well. The worst case would be shut down of the machine.

For sensitive industry customers, such system performance is not acceptable since the financial loss

would be very high.

5.1.2 Consequence of Unbalance in Rectifier Loads

The consequence of unbalanced voltage applied in rectifier loads is also presented in Fig. 5.4.

The system voltage also has 2% negative sequence. Fig. 5.4 shows the rectifier phase A current,

which is quite different than when under balanced grid voltage. When under balanced grid voltage,
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Figure 5.4. Rectifier current under 2% unbalanced grid voltage.

the main harmonic components are 5th and 7th order, while the largest harmonic shifts to 3rd

order in Fig. 5.4. The grid current injected into main grid is critical to power quality, which is

shown in Fig. 5.5. The current harmonics limits for a power system can be found in IEEE standard

[91], which is 4% for harmonic order of 9 and less, and 2% for harmonic order of 15 and less. Fig.

5.6 depicts the FFT analysis of grid current under 2% unbalanced grid voltage. The red bar is

the magnitude percentage corresponding to fundamental current for various odd harmonic orders,

while the green bar is the limit specified by the standard for different odd harmonic order currents.

Based on the system parameters and short circuit calculation, the THD limit of grid current for

the model is 8% [91]. However, the actual THD of the current for this case is 15.86%, which is

almost 2 times of the limit.

5.2 Controller Design

Since the battery is connected with the microgrid via VSC, it is possible to design a proper

control strategy to have the VSC to compensate both negative sequence and harmonic currents

injected into the grid. The reason does not use the PV’s VSC to perform the compensation is that
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Figure 5.5. Grid current under 2% unbalanced grid voltage.
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Figure 5.6. FFT analysis of grid current under 2% unbalanced grid voltage.
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Figure 5.7. Simplified system topology.

the VSC of PV has to control the dc voltage for PV panel’s dc/dc converter. However, the battery

has a relatively stable dc voltage, so its VSC has more freedom to implement sophisticated control

objectives.

In Fig. 5.7, the microgrid is simplified with each component’s current labeled. Since the major

negative sequence and harmonic currents are contributed by induction machine and rectifier, the

PV station is ignored in Fig. 5.7. Assuming the PCC voltage is unbalanced, the induction machine

current im can be written as im = imp+ imn, where imp and imn represent the positive and negative

sequence current. The rectifier load current ir also can be written as ir =
∑
k=1

(irp k + irn k), where

k = 1, 2, 3... is the harmonic order and the subscript rp and rn represent positive and negative

sequences. Apparently, the current ig injected into the grid would contain various harmonic currents

and negative sequences, which is not acceptable in terms of power quality.

One solution for this problem is to design a proper control strategy for the battery’s VSC

and make it inject specific currents to the grid for compensation. For instance, let the battery

ib = ib0 − imn −
∑
k=2

irp k −
∑
k=1

irn k, where ib0 is the battery’s own current order. So the total grid

current ig will only have positive sequence and the negative sequence and harmonic currents will

be canceled out.
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Figure 5.8. Conventional dq control strategy for VSC.

The conventional control scheme for VSC is dq decoupled control algorithm, which is shown in

Fig. 5.8. θ is the system voltage angle at nominal frequency of 60Hz. For a balanced system, the

currents id and iq are both dc quantities, and the PI controllers are able to regulate them in order

to track the respective references. However, under unbalanced case, the dq currents are no longer

dc quantities but contain ac time varying currents at frequency of 120Hz. Since PI controllers can

not track ac signals, two low pass filters are needed to get rid of the 120Hz components. Similarly,

in order to control the negative sequence current, a negative sequence dq transformation is needed

and two low pass filters are required to filter out the 120Hz positive sequence part. Moreover, this

control structure is specific for nominal frequency, for each harmonic order, a complete set of the

controller shown in Fig. 5.8 is needed. The difference is the angle θ will be the corresponding angle

at each harmonic order. Obviously, the complexity of the overall controller is very high and the

calculation burden will cost much resources for a real controller.

Instead of the conventional dq controller, a PR controller is more suitable for such kind of

application. The transfer function of a PR controller is shown in (5.3), where Kp is the proportional

gain and Kih is the resonance gain for each harmonic order. The control structure is also shown

in Fig. 5.9, where only first order and second order controller are drawn. The current regulated

by PR controller has to be ac current as it has very limited response for dc signals. Another
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Figure 5.9. A PR controller structure.

advantage of PR controller is for each order of current, the controller can regulate both positive

and negative sequence as long as the frequency is the same with the controller’s harmonic order

[40, 41]. Hence, the overall controller would be much more easier to implement. Since the controller

needs ac current signals, instead of dq transformation, the abc currents will be transformed into αβ

frame. The current reference of battery shown above will also be transformed into αβ. Obviously,

in order to get a proper current reference for battery, a signal conditioning unit which can correctly

extract the negative sequence and harmonic currents of im and ir is needed.

Gh(s) = Kp +
∑

h=2,3,4...

Kih
s

s2 + (ω · h)2 (5.3)

5.3 Validation

A simulation model of microgrid is built in RT-LAB in order to validate the capability of

battery inverter for negative sequence and harmonics current compensation. RT-LAB is a Real-

Time Digital Simulator manufactured by OPAL-RT which can simulate the power system model

with detailed power electronics switches in real-time. Therefore, it can provide precise simulation

results and taking the switching details of IGBTs into account. Moreover, the simulation can run in

real time and highly improve simulation efficiency. Fig. 5.10 shows the setup of RT-LAB simulator
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Figure 5.10. Real-time digital simulation setup using RT-LAB.

and its corresponding oscilloscopes which monitor the simulation signals, such as voltage, current

and power.

A three-phase programmable voltage source is selected to emulate the grid. Besides the regular

positive sequence voltages, the programmable voltage source can also generate negative sequence

voltages and superpose them onto the positive sequence. Therefore, that feature can be used to

simulate the unbalanced voltage cases. Four cases will be conducted to investigate the current

compensation capability of battery inverter with PR controller. The first case would investigate

the unbalanced and harmonic currents pollution to the grid under 2% unbalanced voltage without

Unbalanced Current (UC) and Harmonic Current (HC) controllers. The other three 3 cases would

investigate the system performance under different level of unbalanced grid voltage with the help

of UC and HC controllers.
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Figure 5.11. Induction machine and grid currents under 0.5% unbalanced grid voltage.

5.3.1 Case I

The microgrid built in RT-LAB consists of five main components, which are main grid, induction

machine, rectifier with load, battery and PV station. The electrical parameters are shown in Table

5.1.

The first case investigates the system performance while the UC controller is enabled. The

HC controller is firstly disabled and then enabled to validate the harmonic current compensation

capability by battery inverter. The negative sequence of grid voltage is set to 0.5%, which indicates

a relatively low unbalanced grid voltage case. Fig. 5.11 (a) shows the induction machine currents

which contain 7% negative sequence component, and Fig. 5.11 (b) shows the grid currents with

both UC and HC controllers enabled. Fig. 5.12 shows the rectifier phase A current, which has

various harmonic components. The 3rd harmonic current is smaller comparing with Fig. 5.3.

Generally, the 3rd harmonic current increase as the voltage contains more negative sequence.

Fig. 5.13 depicts the battery inverter current in stationary frame. The blue trace is the battery

inverter α current reference and the red line is the actual α current. Since the battery has to inject

60



www.manaraa.com

55 55.005 55.01 55.015 55.02 55.025 55.03 55.035 55.04
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

D
io

de
 c

ur
re

nt
 (

pu
)

Figure 5.12. Rectifier current under 0.5% unbalanced grid voltage.

harmonic currents to compensate the rectifier current, the reference current is already distorted.

Thanks to the UC and HC controllers, the actual current tracks the reference in a precisely manner

both on α and β axes. Therefore, the grid phase A current shown in Fig. 5.14 (b) is improved

comparing to Fig. 5.14 (a) when the HC controller is disabled. The FFT analysis of case II is

included in Fig. 5.15, the 5th and 11th order harmonic current are beyond the limits set by [91]

when the HC controller is disabled. With the help of HC controller, all odd order harmonic currents

are less than the limits. The THD of grid current without HC controller is 11.3% while the THD

of grid current decreases to 5.1% with HC controller enabled.

5.3.2 Case II

In Case, the negative sequence voltage is 2%, however, the HC controller is enabled after 60s.

Fig. 5.16 shows the induction machine and grid currents under 2% unbalanced grid voltage. The

negative sequence induced by induction machine is the same as 26%, however, the injected grid

currents have eliminated most of the negative and harmonic currents by UC and HC controllers.

The rectifier current is identical to Fig. 5.4 since the grid condition is the same.
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Figure 5.13. Battery inverter currents in stationary frame.
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Figure 5.14. Grid current under 0.5% unbalanced grid voltage.
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Figure 5.15. FFT analysis of grid current under 0.5% unbalanced grid voltage.
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Figure 5.16. Induction machine and grid currents under 2% unbalanced grid voltage.
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Figure 5.17. Battery inverter currents in stationary frame.

Fig. 5.17 demonstrates the battery inverter current in αβ frame. The HC controller still works

properly since the actual αβ currents track their corresponding references exactly. Fig. 5.18 shows

the details of grid phase A current comparing between HC controller disabled and enabled. The

current distortion on highest and lowest peak has been improved considerably. Correspondingly,

the THD of grid currents is 6.82% when both UC and HC controllers enabled while the THD is

14.21% when only UC controller is enabled. Fig. 5.19 shows the FFT analysis of grid current, and

all of the odd order harmonics are below the limits with the controllers, however, 3rd, 5th and 7th

order harmonics are larger than the limits when HC controller is not used.

5.3.3 Case III

The case III introduces a relative high level of unbalanced voltage, which is a 4% negative

sequence voltage included. The negative sequence current in induction machine is as high as

48% of total current and implies huge unbalanced current existed, which is shown in Fig. 5.20

(a). However, the total grid current injected to PCC is still balanced and has limited amount

of harmonics, which is shown in Fig. 5.20 (b). Due to high level of unbalanced grid voltage, the
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Figure 5.18. Grid current under 2% unbalanced grid voltage.
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Figure 5.19. FFT analysis of grid current under 2% unbalanced grid voltage.

65



www.manaraa.com

64 64.005 64.01 64.015 64.02 64.025 64.03 64.035 64.04
-2

-1

0

1

2

(a) Induction machine currents

C
ur

re
nt

 (
pu

)

64 64.005 64.01 64.015 64.02 64.025 64.03 64.035 64.04
-3

-2

-1

0

1

2

3

(b) Grid currents
Time (s)

G
rid

 c
ur

re
nt

 (
pu

)

Figure 5.20. Induction machine and grid currents under 4% unbalanced grid voltage.

rectifier current distortion in Fig. 5.21 became worse, which implies the 3rd order harmonic current

is larger and became more difficult to be eliminated.

Since the 3rd order harmonic current component became larger, the rectifier current became

much more sharper. In order to compensate it, the battery current component at that frequency

also needs to become more sharper. This phenomena can been found in Fig. 5.22 (a), the reference

of α current has sharp distortion at each highest and lowest peak which is needed to compensate

the 3rd order harmonic current component of induction machine. Since the changing rate at

peak distortion is very high, the actual current can not track the reference instantaneously. Fig.

5.23 shows the grid phase A current, and small distortion at peak can still be found. The FFT

analysis shown in Fig. 5.24 indicates the 3rd order harmonic current is around 5.6% and 5th order

harmonic current is slightly higher than 4%, though those harmonic currents have been greatly

improved comparing to the case without HC controller. The THD of grid current with controller

is 8.89%, which is slightly higher than the 8% limit. The THD of grid current without controller

is 15.08%. Therefore, when the grid voltage has higher level of negative sequence component, the
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Figure 5.21. Rectifier current under 4% unbalanced grid voltage.
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Figure 5.22. Battery inverter currents in stationary frame.
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Figure 5.23. Grid current under 4% unbalanced grid voltage.
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Figure 5.24. FFT analysis of grid current under 4% unbalanced grid voltage.
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rectifier load would generate more 3rd order harmonic current which may exceed the compensation

capability of battery inverter. The THD of grid current may violate the limit set by the standard.
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CHAPTER 6

SYSTEM IDENTIFICATION BASED VSC-HVDC DC VOLTAGE CONTROLLER
DESIGN

VSC-HVDC is becoming a preferred solution to deliver renewable energy to main grids [92,

93, 94]. Proper controls are required for adequate operation of the VSC-HVDC. Depending on

the function of each station, the converter station could operate at either power control or dc-link

voltage control mode. dc-link control is important for power balance and fault ride through. Hence

proper design of the dc-link voltage in a VSC-HVDC system is investigated in this chapter.

Typically, the controllers are PI controllers, are designed based on the transfer function of VSC

model. [52, 53, 54, 55] derived the VSC models based on system parameters and basic circuit

equations, which means the system variables need to be known in advance. [56] obtained the

multi-terminal VSC-HVDC model via small signal analysis. [59] proposed methods to model power

converters using reduced-order system.

Without knowing all parameters of the system, dynamic models can be obtained through system

identification given input and output dynamic responses. MATLAB System Identification Toolbox

is designed for such purpose and has been used in model identification. For instance, [60, 61] have

proposed approaches to identify the model representation of dc-dc power converters via MATLAB

System Identification Toolbox. [58] used MATLAB System Identification Toolbox to identify a

linear model for a fuel cell system.

This chapter1 proposes to use MATLAB system identification toolbox to identify the open-loop

system model for dc-link voltage control design. The d-axis current reference is treated as the input

while the dc-link voltage is treated as the output. With the simplified linear model determined

from the toolbox, a dc-link voltage controller’s parameters can be determined accurately. Simulation

1This chapter was published in North American Power Symposium (NAPS), 2012, vol., no., pp.1,6, 9-11 Sept.
2012. Permission is included in Appendix B.
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results indicate that the identified model is accurate and the controller could meet the performance

requirements [95].

6.1 System Model

6.1.1 System Topology

The VSC-HVDC system studied in this chapter is a two terminal system, which connects two

ac grids. Fig. 6.1 depicts the structure of the two terminal VSC-HVDC system. One of the two

grids is the sending end and the other is a receiving end, both are 230 kV, 60 Hz ac sources, and

the capacity is 2000 MVA. The converter stations are modeled by two three-level dc/ac IGBT

converters, and the PWM switching frequency is 1620 Hz. The π transmission cable model in

SimPowerSystem library is used to represent the dc-link, and the cable length is set to 70 km.

Table 6.1 shows the parameters of the above VSC-HVDC system. The two terminal VSC-HVDC

system is bulit in SimPowerSystem with detailed power electronics converters.

Transmission line

Transmission line

1dcV 2dcV
2L

2acV
1L

1acV
Transformer 1 Transformer 2

Figure 6.1. Topology of a two terminal VSC-HVDC system.

Table 6.1. Electrical parameters of the VSC-HVDC system

Quantity Value

ac grid voltage 230kV (L-L RMS)

Coupling inductor 0.03ohm+0.02H

Transformer 1 230kV/100kV, 200MVA, leakage 8%pu

Transformer 2 230kV/100kV, 200MVA, leakage 8%pu

Transmission line 75km, (0.2568ohm+2mH+0.0086uF)/km

dc-link capacitor 700uF

dc-link voltage 250kV
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6.1.2 Control Modes

The two terminal VSC-HVDC system consists of one rectifier station and one inverter station

respectively. Normally, the rectifier station operates at power control mode. At this mode, the

station controls active power drawn from the ac grid, and controls the reactive power compensated

to grid or controls the ac grid voltage directly. The inverter station operates at dc-link voltage

control mode, which regulates the dc-link voltage at a specific level. Otherwise, the active power

flow balance between two stations could not be maintained. As well as the rectifier station, the

inverter station could also control the reactive power compensation or ac grid voltage if required.

6.1.2.1 Rectifier Station Control

Fig. 6.2 depicts an equivalent circuit of a VSC connected with a three-phase ac source. (6.1)

describes the voltage and current relationship between ac sources and converter. Variables in the

abc system in the above circuits can be transformed into a synchronous reference frame. The

voltage and current relationship is shown in (6.2) and (6.3), where ω is the angular frequency of ac

system, vd, vq, vd1, and vq1 represent the d and q components of the PCC voltage (va, vb, vc)and

VSC output voltage(va1, vb1, vc1), respectively, and id and iq represent the d and q components of

the current flowing between the ac system and the VSC. The powers could also be calculated in

dq frame, which is shown in (6.4). In which, the d axis voltage is aligned with the phase A of the

ac source voltages, which results the q axis voltage is equal to zero when no unbalance sequences

exists. From (6.4), it is obvious that the active power is controlled by d axis current only, while

the reactive power is controlled by q axis current only. The ac source voltages are assumed to be

strong enough so that vd is a constant. Therefore, the controller for rectifier station showed in Fig.

6.3 could be implemented.


va = va1 + iaR+ jωLdiadt

vb = vb1 + ibR+ jωLdibdt

vc = vc1 + icR+ jωLdicdt

(6.1)
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vd1 = −(Rid + L
did
dt

) + ωsLiq + vd (6.2)

vq1 = −(Riq + L
diq
dt

)− ωsLid (6.3)


p = vdid

q = −vdiq
(6.4)

6.1.2.2 Inverter Station Control

The main function of inverter station is to regulate the dc-link voltage. The dynamics on

dc capacitor is shown in (6.5), in which the term vdid is the active power transferred from grid,

and which is equal to the active power on dc side if the losses on IGBTs are neglected. In fact,

the controllers include two control loops, the outer control loop is dc-link voltage control loop.

The dc voltage is measured and compared with reference, the resulting error is then sent to a PI
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controller, and the output of which is the reference of d axis current. The inverter station could

also compensate reactive power to the grid due to the advantage of IGBTs. In Fig. 6.4 (a), the

magnitude of the PCC voltage is measured and compared with the command, the error signal is

then the input of a PI controller, the output of which is the reference of q axis current. The inner

control loops are the cross decoupled d, q current control loops, which is shown in Fig. 6.4 (a).

vdc(C
dvdc
dt

+ idc2) = vdid →
dvdc
dt

=
vdid
vdcC

− idc2
C

(6.5)

The control mechanisms described above are achieved via the well-known decoupled dq control

algorithms [2]. The controllers include two control loops, depending on the stations, the outer

control loop could be either a power control loop for rectifier station, or it could be a dc-link

voltage control loop for inverter station. The inner control loops are the cross decoupled d, q

current control loops.

The controllers essentially used are typical PI controllers in most cases. Therefore, two critical

parameters need to be determined carefully, which are the proportional gain Kp and the integral

gain Ki. However, due to the complexity of the VSC-HVDC system and the nonlinear effect

introduced by power electronics devices, it is hard to directly derive the exact mathematical model

of the system for controller design purpose. Many attempts have been done to explore the accurate

model representation of the VSC-HVDC system, such as circuit equation derivations and small

signal analysis [52, 53, 54, 55, 56].

6.2 System Identification

The major purpose of the chapter is to determine the parameters of dc-link voltage controller,

which means the inner control loop has already been tuned in advance. The parameter selection

of the current controller is made based on [1]. Fig. 6.4 (a) describes the detailed structure of

the dc-link voltage controller, in which, the voltage controller is the object to be determined, and

the other blocks could be considered as the plant to be controlled, which includes PLL, current

controller, PWM generator, IGBT converters, and dc capacitor. All the blocks other than voltage
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Figure 6.4. Detailed controller of the inverter station.
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controller could be treated as one aggregated plant, as shown in Fig. 6.4 (a)’s dotted box, which

looks like a black-box.

The input signal of the black-box is the d axis current, which represents the active power

delivered from rectifier station, while the output signal of the black-box is simply the dc-link

voltage. Since the inverter station is at open-loop control, the actual dc-link voltage is no longer

the pre-defined value, it will automatically pump up to a level which could be able to satisfy the

requirement of the ac side voltage of the IGBT converters. Fig. 6.4 (b) depicts the open-loop dc-

link voltage controller of inverter station. Since the dc-link cable connects two converter stations,

the interactions are critical for the system identification procedure. The input signal of the black-

box, d axis current, should be calculated depending on the active power sent out from the rectifier

station, which ensures the power balance. Otherwise, the system would be unstable, and the system

characteristics could not be captured. (6.6) describes the derivation of the input signal id, in which,

Prectifier is the active power sent from the rectifier station if the power loss on dc cable is neglected,

vd inv is the actual d axis voltage of the ac side at inverter station.

id =
Prectifier
vd inv

(6.6)

An active power step change in rectifier station is applied to test the dynamic response on

dc-link voltage. From (6.6), the input signal tracks the active power change in rectifier station,

the stability on dc-link voltage could be guaranteed. However, without dc link voltage feedback

control, when the active power coming from the rectifier station goes up, the dc-link voltage would

rise up and stay at a higher level due to the dynamic response. As a result, the dynamics on output

signal corresponding to the input signal could be found.

Fig. 6.5 shows the step change on d axis current and the response on dc-link voltage. At 20 s,

the active power changes from 1 pu to 1.5 pu, while it returns to 1 pu at 30 s. The output signal

dc-link voltage vdc rises up to 230 kV and decays to around 210 kV after several seconds, and it

has an opposite response at 30 s when id decreases. With the system identification toolbox, the

step up change on input signal and the corresponding output signal response is used to estimate

the transfer function representation of the plant (from 19.9 s to 29.9 s). The step down response is
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Figure 6.5. Active power step up and down responses.
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Figure 6.6. Open-loop plant and corresponding feedback controller.
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used to verify the accuracy of the estimated transfer function (from 29.9 s to 39.9 s). The order of

the transfer function is unknown before the estimation done. With System Identification Toolbox

SIT, an initial guess of the order needs to be performed, after that, the order could be increased if

the best fits is low, which indicates the accuracy of the estimated model. The increase of the order

guess could stop if there is no significant improvement on best fits while order increasing. Fig. 6.7

illustrates the step responses of different order models and their best fits, which indicates order 6

is good enough to represent the black-box. Actually, since there is one inductor between converter

and grid, one capacitor at dc side, and one smoothing inductor at dc cable, the order of the system

should be at least three. And since the best fit of estimated system above order 6 is not improved

that much, order 6 system is chosen as the estimated system. The black trace is the actual dc-link

voltage due to a active power step down change in the VSC-HVDC model in SimPowerSystem, and

the other color traces are the output signal waveforms of identified models. Therefore, the transfer

function of dc-link voltage over d axis current could be obtained.

Figure 6.7. Identified dc-link models with various orders.

(6.7) shows the transfer function estimated by SIT, in which, id(s) and vdc(s) are input and

output signals respectively. The transfer function is the model representation of the black-box
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Figure 6.8. Controller characteristics plot of identified model.

shown in Fig. 6.4. The controller parameters design could be implemented via SISO tool in

MATLAB, and the limits are able to be obtained thereafter.

G(s) =
vdc(s)

id(s)
=

4.848s5 − 8.438e6s4 − 2.659e10s3

s5 + 6.342e5s4 + 6.445e9s3

−6.69e15s2 + 2.843e18s+ 1.02e18

+8.727e14s2 + 4.292e16s+ 3.781e16

(6.7)

Fig. 6.6 shows the controller and the plant to be controlled, in which G(s) is the estimated

model obtained via SIT, and C(s) is the controller to be designed, which is a typical PI controller,

and (6.8) is the transfer function of C(s). The open-loop system is the product of C(s) and G(s),

hence, the root locus and bode plot could be drawn. As long as the bandwidth of controller and

phase margin are selected, the controller parameters could be obtained by adjusting Kp and Ki

until the bode plot of the open-loop system meets the requirements. Graphic control design tool

could accelerate the procedure, such as the SISO toolbox in MATLAB. Fig. 6.8 plots the root locus

of C(s)G(s), and the open-loop and closed-loop bode plots of which are included as well.
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Since the switching frequency is 1620 Hz, the current controller bandwidth is chosen at 150 Hz,

which is around 10 times smaller. Based on the coupling inductor, the current controller parameters

are calculated in (6.8), in which τi is 1
150Hz [1]. Therefore, Kpc and Kic are 3 and 4.5 respectively.

Since the current controller is at inner loop, the bandwidth should be considerably greater than

the dc-link voltage controller. Subsequently, 15 Hz should satisfy those criterions and is chosen as

the bandwidth of the dc-link voltage controller. Table 6.2 lists the designed controller parameters

corresponding to three different bandwidth and phase margin combinations. A low phase margin

which is 5 deg is used to test the low performance controller.

C(s) =
Kps+Ki

s
,Kpc =

L

τi
,Kic =

R

τi
(6.8)

Table 6.2. dc-Link voltage controller parameters

Bandwidth Phase margin Parameters

70 rad/s 45 deg Kp = 0.2, Ki = 1.7

90 rad/s 20 deg Kp = 0.4, Ki = 4.1

90 rad/s 5 deg Kp = 0.4, Ki = 6.2

6.3 Validation

Since the transfer function and the PI controller parameters have been obtained, a simple

closed-loop system could be drawn in Simulink, which is shown in Fig. 6.6. The input signal is the

dc-link voltage reference and the output signal is the dc-link voltage. A step up change on dc-link

voltage reference is applied to observe the response on output signal in Fig. 6.6. The reference

change is also applied to the actual VSC-HVDC model in SimPowerSystem, and the dynamic

response on dc-link voltage is compared with the estimated system in Simulink. Fig. 6.9 illustrates

the dc-link voltage behaviors with three cases comparison corresponding to three different sets of

controller parameters. For the case with 45 deg phase margin, the mismatch between measured

and estimated voltage is a little bit higher, it may because of the controller is well designed,
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and the voltage is more sensitive to other system factors. The mismatch is becoming smaller for

the 5 deg phase margin case, and it may because the controller is not well tuned which makes the

voltage is more sensitive to the controller. The 5 deg phase margin significantly make the controller

performance worse, which introduces more oscillations before reaching steady state. However, the

actual dc-link voltage in VSC-HVDC model and the output signal of estimated model matches each

other, though there are some small mismatches on peak values and settle times. The simulations

verify the estimated model in (6.7) could accurately represent the actual VSC-HVDC system in Fig.

6.4, and the controller designed based on which could effectively regulate the dc-link voltage. The

research could expand to hardware validation, since some details of the physical converter are not

included in SimPowerSystem, such as the parasitic inductance and snubber circuit, the estimated

system representation could be different.
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CHAPTER 7

MODELING AND SIMULATION OF MULTI-TERMINAL HVDC FOR WIND
POWER DELIVERY

VSC-HVDC transmission has the advantage to be easily implemented in multi-terminal topolo-

gies. The dc link voltage polarity can be kept the same for different power flow directions. This

feature could benefit the grid integration of offshore wind farms, since the physical distance of

each wind farm could be far and the grid integration station may have only few choices. The

multi-terminal VSC-HVDC system could integrate several wind farms to one or multiple grid

side converter station, which provides high flexibility for power system planning and construction

[46, 47].

This chapter1 will investigate modeling and simulation of a four terminal VSC-HVDC system

under both normal and fault scenarios. The MHVDC system includes two DFIG wind farms. The

control strategies of both WFVSC and GSVSC will be described. Simulations of the system are

carried out in a Real-Time digital simulator RT-LAB. The system response under grid side ground

fault is also studied, and an approach to mitigate the over-voltage during fault is proposed and

tested [96].

7.1 System Model

7.1.1 System Topology

The multi-terminal VSC-HVDC system studied in this chapter consists of four terminals. Two

terminals are connected to respective DFIG wind farms, and the other two terminals link to the

main ac grids. Fig. 7.1 shows the topology of the system, in which, two wind farms are connected

1This chapter was published in Power Electronics and Machines in Wind Applications (PEMWA), 2012 IEEE,
vol., no., pp.1,6, 16-18 July 2012. Permission is included in Appendix B.
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to respective converter stations. The main grid is represented by a 230kV (L-L rms) voltage source

Vac1 and Vac2, which connect to the above two wind farms via long distance dc cables. Each segment

of the transmission cable is 75km. Wind farm 1 consists of 50 units of DFIG, which has a nominal

power rating of 2MW for each unit, while wind farm 2 is built up by 50 units of the same DFIG.

Each wind farm can generate 100MW to the grid at nominal operation. Fig. 7.2 shows a DFIG

wind turbine model used in this chapter, in which the RSC and GSC are rotor side converter and

grid side converter respectively, both are IGBTs converters. The power rating of WFVSC is 100

MVA, and the nominal ac side voltage is 100 kV. The dc cables are 75 km and 50 km long for

respective wind farms, and the reference voltage is set at 250 kV. The capacity of GSVSC is 200

MVA, and the grid is modeled as a 2000 MVA, 230 kV voltage source. They are connected through

a 230 kV/100 kV transformer.

1acV
Wind farm 1

Wind farm 2 2acV

Rectifier 1

Rectifier 2

Inverter 1

Inverter 2

Line

Line

Line

Line

Line

_ 1dc recv 1r

_ 2dc recv

2r

1dcv
3r

2dcv

4r

5r

_ 1dc invv

_ 2dc invv

Figure 7.1. Topology of a multi-terminal VSC-HVDC system.

7.1.2 Control Modes

The control modes of the VSCs in Fig. 7.1 depend on the function of the converters. Generally,

the converters at wind farm side operates at Vf control mode, which regulates the voltage and

frequency of the ac side. Hence, the WFVSC can behave as an infinity bus, which could absorb

whatever the active and reactive power generated by DFIGs. The GSVSC normally operates at

dc-link voltage control mode, which controls the voltage of the dc cable [51]. As long as the power
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DFIG

RSC GSC

Transformer

Figure 7.2. A DFIG wind turbine model.

balance is achieved, the dc voltage could be maintained at an appropriate value. The other control

freedom could be either reactive power or ac voltage control, which normally compensate reactive

power required by the ac grid.

7.1.2.1 GSVSC Control

The control modes of the VSCs in Fig. 7.1 depend on the function of the converters. Generally,

the converters at wind farm side operates at vf control mode, which regulates the voltage and

frequency of the ac side. Hence, the WFVSC can behave as an infinity bus, which could absorb

whatever the active and reactive power generated by DFIGs. The GSVSC normally operates at

dc-link voltage control mode, which controls the voltage of the dc cable [51]. As long as the power

balance is achieved, the dc voltage could be maintained at an appropriate value. The other control

freedom could be either reactive power or ac voltage control, which normally compensate reactive

power required by the ac grid. Since there are two GSVSCs, a dc voltage droop control method

is used to regulate the respective dc voltages and active powers. (7.1) and (7.2) describe the dc

voltage controller with droop control, in which, the coefficients k1 and k2 determines the power

ratio between inverter stations 1 and 2. Combining (7.1), (7.2), and (7.3) yield the ratio of power
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which depicted in (7.4) [51, 97]. In this chapter, k1 and k2 are set to identical so that the two

inverter stations would split the active powers from rectifier stations equally.

vdc inv1 = vdc0 + k1idc inv1 (7.1)

vdc inv2 = vdc0 + k2idc inv2 (7.2)

vdc2 = vdc inv1 + r4idc inv1 = vdc inv2 + r5idc inv2 (7.3)

Pinv1

Pinv2
=
vdc inv1idc inv1

vdc inv2idc inv2
≈ idc inv1

idc inv2
=
k2 + r5

k1 + r4
(7.4)

Once the dc voltage reference for each GSVSC such as vdc inv1 and vdc inv2 are derived, a dc-link

voltage controller is required to regulate the dc voltage at each terminal. The control mechanisms

described are achieved via the well-known decoupled dq control algorithms [2]. The controller

includes two control loops, the outer control loop is dc-link voltage control loop. The dc voltage is

measured and compared with reference, the resulting error is then sent to a PI controller, and the

output of which is the reference of d axis current. The grid side converter could also compensate

reactive power to the grid due to the advantage of IGBTs. In Fig. 7.3, the magnitude of the PCC

voltage is measured and compared with the command, the error signal is then the input of a PI

controller, the output of which is the reference of q axis current. The inner control loops are the

cross decoupled d, q current control loops, which is shown in Fig. 7.3.

7.1.2.2 WFVSC Control

The WFVSC control adpots vf control which regulate the ac voltage and frequency and is

introduced in Chapter 3.
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Figure 7.3. dc-link voltage controller.

7.1.3 Grid Fault Operation

In case of any potential fault at grid side, the performance and stability of the VSC-HVDC

system could be affected. In this chapter, a three-phase ground fault at grid side is studied. Since

the three-phase ground fault at grid side could lead to a huge voltage sag, the power generated by

wind farms is difficult to sent to grid continuously. The response at wind turbines is much slower

than the electrical fault, which implies the active power generation is still almost the same with the

instance before fault, hence decreasing the power generation of wind turbine is not an ideal choice.

If there is no proper action taken, the dc-link voltage would rise up since the active power has no

where to go. This chapter proposes an approach to prevent the dc-link voltage overshoot, which

is shown in Fig. 7.4. At the dc side of the GSVSC, a switch and a dc/dc converter are used to

connect a battery and the dc-link. Once the ground fault at grid side is detected, the switch will

be closed to let the excessive active power to be stored in the battery through a dc/dc converter.

Fig. 7.5 depicts the dc/dc converter topology and control strategy for the battery. In which, the

converter is controlled by a PWM regulator, when the up IGBT switch is turned on, the down

IGBT switch is turned off, and the modulation index m is chosen at 0.2. The output voltage of

the dc/dc converter is expressed in (7.5). The battery model in this case is modeled as a constant

voltage source, therefore, the dynamics of SOC is neglected.

vout =
1 +m

2
vdc (7.5)
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Figure 7.4. An approach to prevent the dc over-voltage after grid fault.
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Figure 7.5. dc/dc converter topology and control for the battery.
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Figure 7.6. Active power of rectifier and inverter stations.
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Figure 7.7. dc voltage of inverter stations.
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Figure 7.8. dc voltage of inverter stations during ac fault.
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Figure 7.9. Grid voltage of inverter station 1 during ac fault.
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Figure 7.10. Grid current of inverter stations during ac fault.
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Figure 7.11. Active power of rectifier and inverter stations during ac fault.
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7.2 Simulation

System evaluations are carried out in RT-LAB, which is shown in Fig. 5.10. The system is

tested both on normal operation and fault operation. For normal operation, the wind speed varies

with time, and therefore the active power generated by DFIGs varies. The system response are

observed, and verified the power balance within VSC-HVDC. For fault operation, a three-phase

ground fault was applied at grid side, and lasted 5 cycles. An over-voltage on dc-link was found

during fault, which may damage the physical dc capacitor and cables. An approach to limit the

overshoot is proposed and tested, which effectively mitigate the over-voltage.

7.2.1 Normal Operation

Ramp changes on wind power are tested for normal operation, and the results are shown in Fig.

7.6 and Fig. 7.7. In ramp up test, from 20s to 25s, the active power of WF1 is increased from 0.5pu

to 1pu (1pu=100MW), while the active power of WF2 is increased from 0.5pu to 1pu from 20s to

25s as well. The total power transferred to grid is correspondingly increased. In ramp down test,

from 25s to 30s, the active power of WF2 is decreased from 1pu to 0.5pu, while the active power

of WF2 is decreased from 1pu to 0.5pu from 25s to 20s as well. Fig. 7.6 shows the power response

at rectifier stations and inverter stations. The power sent to grid varies along with the change at

rectifier stations.

The dc voltage profile at each inverter station is depicted in Fig. 7.7. Since the droop control

method is adopted, the dc voltage is no longer a constant but depends on the active power flow.

The dc voltage at each inverter station varies at the same pace because the droop coefficients k1

and k2 are set to identical.

7.2.2 Grid Fault Operation

For fault operation, a three-phase ground fault was applied at grid side of inverter station 1,

and lasted 5 cycles. An over-voltage on dc-link was found during fault, which may damage the

physical dc capacitor and cables. An approach to limit the overshoot is proposed and tested, which

effectively mitigate the over-voltage. Fig. 7.8 shows the dc voltage at two inverter stations with
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and without fault control respectively. Obviously, the dc voltage overshoot at inverter station 1

reaches almost 30% without fault control, and the dc voltage overshoot reaches 7.5% at inverter

station 2. Contrarily, the dc voltage overshoot is limited below 10% at inverter station 1 and 3%

at inverter station 2 respectively. Normally, the fault could be cleared after several cycles in power

system, which is 5 cycles in this case. Therefore, the capacity of the battery does not to be very

high. In case the fault is permanent, the battery could also be used to store the power for a short

period, and the wind turbines and other components could have enough time to turn off without

damages.
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CHAPTER 8

AC IMPEDANCE BASED RESONANCE ANALYSIS IN A VSC-HVDC SYSTEM

Harmonic resonances can impact the power quality and the power transfer level of VSC-HVDC

system. Normally, harmonics generated by switching sequences could be eliminated by ac filters.

However, there are low frequency harmonic resonances due to the interaction of ac grid and VSC

controllers. Those resonances are not easy to be filtered out. Though harmonic resonances have

been examined in VSC interfaced ac grids in [98, 99, 100, 63], a comprehensive examination of the

both ac systems (the rectifier side and the inverter side) has not been seen in the literature. It will

be the objective of this chapter1.

Since harmonic resonances are related to electrical systems mainly, impedance or admittance

model based analysis is feasible in understanding the phenomena. In [101, 100, 63], impedance mod-

els of grid-connected inverters are developed for resonance analysis. [101, 100] developed impedances

models of converters with only the inner current control loops considered. The outer control loops

are ignored. Investigation shows that grid inductor, shunt capacitor and PLL have impact on

harmonic resonances.

Impedance models of the VSC converter with inner current control and outer dc/ac voltage

control loops are developed in [63]. Resonance stability is studied for both power flow direction.

The studied ac grid is represented by a series RL circuit. It is stated in [63] that for the interaction

of a converter and the grid impedance, with outer loop ignored, instability cannot be detected.

With the outer control loop and PLL considered, instability can be detected. Therefore, modeling

of the outer control loops is important.

1This chapter was published in Power Delivery, IEEE Transactions on, vol.28, no.4, pp.2209,2216, Oct. 2013.
Permission is included in Appendix B.
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In a VSC-HVDC system, there are two converters and each has its own control strategies. The

rectifier controls power flow while the inverter controls dc-link voltage [1]. [63] studied only the

interactions of the inverter and ac grid. The paper also assumes that the integral coefficients of

converter PI controllers are equal to zero. In many literatures, the integral gains are greater than

the proportional gains [102, 103].

In this chapter [104], resonance stability will be investigated for the two ac systems (the rectifier

side ac grid and the inverter side ac grid). Typical VSC-HVDC controls will be adopted and

impedance models of the systems will be developed with the inner and outer converter control

loops included. Nyquist stability criterion and impedance frequency responses will then be applied

to detect resonances. Impacting factors on stability such as feed-forward filter structure, line length

and power transfer levels will be identified.

8.1 System Model

A VSC-HVDC system is presented in Fig. 8.1, where the basic controller for the rectifier and

inverter stations are also presented. Normally, power is sent from the rectifier station to the inverter

station. Power control is implemented at the rectifier station, while the inverter station controls

dc-link voltage to ensure power balance. An advantage of VSC-HVDC over LCC-HVDC is its

reactive power compensation capability, which is provided by the reactive power controller or ac

voltage controller.

Table 8.1. System parameters of VSC-HVDC model

Quantity Value

ac system line voltage 100kV

ac system frequency 60Hz

Grid impedance 0.02H/0.012H

Grid filter capacity 18Mvar

Grid filter tuning frequency 1620Hz

dc rated voltage 250kV

dc cable parameters 0.0139Ω/km, 0.159mH/km, 0.231µF/km

dc cable length 20km
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Figure 8.1. A two-terminal VSC-HVDC system.

For a balanced three-phase system, Fig. 8.2 shows the equivalent circuit of a VSC connecting

with an ac grid via a coupling inductor L, where the resistor is neglected. The ac grid is modeled as

an ac voltage source vs with an impedance Z(s). (8.1) describes the voltage and current relationship

between grid and converter in time domain and represented in the dq frame. The letter with upper-

line represents complex space vector, e.g., v = vd + jvq and i = id + jiq. The angular speed within

grid reference frame is ω1, which is a constant throughout this chapter.

L ( )Z s

dcC
dcv
+

−

+

−

PCC

E
+

−

v

1i2i i
=



gv

Figure 8.2. Circuit model of a VSC and ac grid.

Table 8.2. Parameters of individual VSC

Quantity Value

Switching frequency 1620Hz

Grid filter 0.04H

dc capacitor 96µF
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L
di

dt
+ jω1Li = E − v (8.1)

where E and v are the PCC voltage and the converter output voltage.

8.1.1 Impedance Models

8.1.1.1 Rectifier Station

The current control loop will be analyzed in order to derive impedance model. The VSC-HVDC

system consists of two terminal stations, one is the rectifier station and the other is the inverter

station. Fig. 8.3 presents the controller of the rectifier station, in which active power Pref and

reactive power Qref are to be regulated.

PI

dE

drefv

qrefv

drefi

qrefi

di

qi

1Lω

−

+

+
PI

−

−
+ −+

−

1Lω

refP ÷
dE

qE+

refQ

÷
dE

+

+

PLL dE

qEpccv

Figure 8.3. Controller of the rectifier station.

Depending on the requirements of application, the reactive power control could be substituted

with ac grid voltage control. vdref and vqref are the converter output voltages and could be derived

as (8.2), which is essentially the inner current control loop.

vref = −(kp +
ki
s

)(iref − i)− jω1Li

+
ω2

0

s2 + 2ξω0s+ ω2
0

E
(8.2)
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The feed-forward items Ed and Eq are the PCC voltage measured in the dq frame and obtained

through a filter. A second-order filter is included in (8.2), and the transfer function is shown in

(8.3). Another option is first order filter, and the comparison of the two filters on resonance stability

is conducted in Section 8.2.

F2nd(s) =
ω2

0

s2 + 2ξω0s+ ω2
0

(8.3)

where ω0 is the cut-off frequency (1000 Hz) and ξ is the damping factor ( 1√
2
).

The controller utilizes PI controllers:

Fc(s) = kp +
ki
s
. (8.4)

Rearranging (8.2) leads to (8.5),

ic = gc(s)iref + yi(s)Ec (8.5)

where 
gc(s) =

kps+ki
Ls2+kps+ki

yi(s) = s2(s+2ξω0)
(Ls2+kps+ki)(s2+2ξω0s+ω2

0)

(8.6)

(8.5) describes the relationship of the current ic in terms of iref and Ec. Alternatively, (8.5)

could be written in matrix form (8.7).

ic =

 gc(s) 0

0 gc(s)

 iref +

 yi(s) 0

0 yi(s)

Ec (8.7)

where f = [fd, fq]
T and f stands for current or voltage symbol.

Power control loop is analyzed as follows. The rectifier station controls the active power trans-

ferred from the left-hand side grid to the converter, which is the outer control loop in dual dq

control loops. Equation (8.8) computes the d axis current reference that controls the active power

flow,
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idref =
Pref
Ed

=
Pref
Ef

(8.8)

where Ef is the d-axis PCC voltage after a filter.

Ef = F2nd(s) |E| (8.9)

The small signal representation of d axis current reference is then expressed as follows.

∆idref = −
Pref
E2

0

F2nd(s)∆Ed (8.10)

where E0 is the rectifier PCC steady-state voltage. Since the direct reactive power compensation

control is used throughout this chapter, the q axis current reference can be derived similarly as

above.


iqref = −Qref

Ed
= −Qref

Ef

∆iqref =
Qref

E2
0
F2nd(s)∆Ed

(8.11)

Combining (8.10) and (8.11) leads to (8.12).

∆iref =

 −Pref rec

E2
0

F2nd(s) 0

Qref

E2
0
F2nd(s) 0


︸ ︷︷ ︸

GEi rec(s)

∆E (8.12)

The input admittance of ∆E and ∆i is then expressed as.

Yrec(s) = Yi(s) +Gc(s)GEi(s)

=

 yi(s)−
Pref

E2
0
F2nd(s)gc(s) 0

Qref

E2
0
F2nd(s)gc(s) yi(s)

 (8.13)
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8.1.1.2 Inverter Station

The dc voltage control analysis is implemented as follows. The inverter station regulates the

dc-link voltage and maintains the active power balance. The controller is depicted in Fig. 8.4,

which consists of two control loops. The inner current control loop is identical to the rectifier

station shown in Fig. 8.3, whereas the outer loop is replaced by a dc voltage controller. The dc

voltage controller Fdc(s) is a typical PI controller shown in (8.14).

PI

dE

drefv

qrefv

drefi

qrefi

di

qi

1Lω

−

+

+
PI

−

−
+ −+

−

1Lω

dcrefv
dcv

qE+

refQ

÷
dE

PI
− +

_

_

ref rec

d inv

P
E

−

+
+

+

+
PLL dE

qEpccv

Figure 8.4. Controller of the inverter station.

Table 8.3. Parameters of controllers

Quantity Value

Current controller kp=50, ki=100

dc-link voltage controller kp=0.04, ki=0.2

Fdc(s) = kpdc +
kidc
s

(8.14)

A feed-forward item −Pref rec/Ed inv is applied to improve the controller dynamic performance.

Hence, the d-axis current reference could be established as follows.

idref = (kpdc +
kidc
s

)(vdcref − vdc)−
Pref rec
Ed inv

(8.15)
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The small signal model of the d-axis current reference is expressed in (8.16),

idref0 + ∆idref

= (kpdc +
kidc
s

)(vdcref − vdc0 −∆vdc)−
Pref rec
Ed inv

(8.16)

It can be assumed that idref0 = −Pref rec/Ed inv, since the active power delivered by inverter

station is the same amount of rectifier station sent if power loss is neglected. The linear model

(8.17) is then obtained.

∆idref = − (kpdc +
kidc
s

)︸ ︷︷ ︸
Fdc(s)

∆vdc (8.17)

In order to derive ∆vdc, the complex power S has to be calculated.

S =
{
Ei
∗}

= (E0 + ∆Ed + j∆Eq)[id0 + ∆id − j(iq0 + ∆iq)]

≈ E0id0 + E0∆id + id0∆Ed + iq0∆Eq

+ j(−E0iq0 − E0∆iq + id0∆Eq − iq0∆Ed)

(8.18)

The active power and reactive power will then extracted:.


P = E0id0 + E0∆id + id0∆Ed + iq0∆Eq

Q = −E0iq0 − E0∆iq + id0∆Eq − iq0∆Ed

(8.19)

Assuming that P0 = E0id0 and Q0 = −E0iq0, the small deviation parts of powers are then

expressed in (8.20).


∆P = E0∆id + id0∆Ed + iq0∆Eq

∆Q = −E0∆iq + id0∆Eq − iq0∆Ed

(8.20)

Considering the dynamics on dc capacitor Cdc, the energy stored in the capacitor is
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W =
1

2
Cdcv

2
dc

⇒ 1

2
Cdc

dv2
dc

dt
= Pdc = P − PL

⇒ Cdcvdc
dvdc
dt

= P − PL

(8.21)

where PL is the active power consumed by load. Applying small perturbation leads to (8.22), the

linear relationship between dc voltage and active power is obtained.

Cdc(vdc0 + ∆vdc)
d(vdc0 + ∆vdc)

dt
= P0 + ∆P − PL0 −∆PL

⇒ Cdcvdc0
d∆vdc
dt

= ∆P −∆PL

(8.22)

Since the current control loop of both inverter and rectifier station is identical, substituting

(8.17) into (8.5) modifies equation (8.20) as:

∆P = E0[−gc(s)Fdc(s)∆vdc + yi(s)∆Ed]

+ id0∆Ed + iq0∆Eq

(8.23)

Using (8.22) and (9.18), and assuming ∆PL = 0, ∆vdc is derived in terms of ∆Ed and ∆Eq.

sCdcvdc0∆vdc = −E0gc(s)Fdc(s) + E0yi(s)∆Ed inv

+
P0

E0
∆Ed −

Q0

E0
∆Eq

⇒ ∆vdc =
(E2

0yi(s) + P0)∆Ed −Q0∆Eq
sE0Cdcvdc0 + E2

0gc(s)Fdc(s)

(8.24)

Substituting (8.24) into (8.17), ∆idref could be represented in terms of ∆Ed and ∆Eq.

∆idref =
−(E2

0yi(s) + P0)Fdc(s)

sE0Cdcvdc0 + E2
0gc(s)Fdc(s)︸ ︷︷ ︸

Gd
dc(s)

∆Ed

+
Q0Fdc(s)

sE0Cdcvdc0 + E2
0gc(s)Fdc(s)︸ ︷︷ ︸

Gq
dc(s)

∆Eq

(8.25)
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Besides dc-link voltage control, the inverter station could also compensate reactive power to

the right-hand side grid, which utilizes the same control structure as that of the rectifier station.

Therefore, the input admittance for the inverter station is shown in equation (8.26),

Yinv(s) = Yi(s) +GEi inv(s)Gc(s)

=

 yi(s) +Gddc(s)gc(s) Gqdc(s)gc(s)

Qref

E2
0
F2nd(s)gc(s) yi(s)

 (8.26)

where

GEi inv(s) =

 Gddc(s) Gqdc(s)

Qref inv

E2
0 inv

F2nd(s) 0

 . (8.27)

8.1.2 Stability Analysis

( )gZ s

sVYcI
Converter Grid

I

Figure 8.5. Small-signal representation of a converter-grid system.

The grid is modeled as a combination of an ideal ac voltage source vs and an impedance , which

consists of a resistor Rg and an inductor Lg. Under dq frame, the impedance is expressed as Zg(s)

in (8.28).

Zg =

 Rg + sLg −ωLg

ωLg Rg + sLg

 (8.28)

Based on Fig. 8.5, the current I flowing from the grid to the converter is
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I(s) =
Vg(s)− Y −1(s)Ic(s)

Zg(s) + Y −1(s)
(8.29)

which can be rearranged to

I(s) = [Y (s)Vg(s)− Ic(s)]
1

1 + Y (s)Zg(s)
(8.30)

Therefore, the stability analysis of the system relies on Y (s)Zg(s) in (8.30). Consequently,

the grid-connected converter will operate stably if Y (s)Zg(s) satisfies Nyquist stability criterion.

Since the VSC-HVDC system consists of a rectifier station and an inverter station, and the input

admittance of each station depends on not only component parameters but also different control

loops, it is obvious that many factors may affect the resonance stability.

8.2 Impacting Factors of Resonance Stability

In this section, we carry out frequency domain analysis based on impedance models and validate

the analysis via MATLAB/SimPowerSystems simulation. SimPowerSystems is a toolbox of MAT-

LAB/Simulink developed by Hydro-Québec of Montreal [105]. Models built in SimPowerSystems

include switching details and are considered high-fidelity models. [106] compared the simulation

results between SimPowerSystems toolbox and PSPICE, and demonstrated that SimPowerSystems

is well suitable for the electrical circuits simulation containing switching devices because it can

detect precise discontinuities.

In the literature, SimPowerSystems simulation results substituting experimental results are used

for validation for VSC-HVDC systems. For example, [107] compared the simulations of CIGRÉ

HVDC Benchmark System between SimPowerSystems and PSCAD/EMTDC, which demonstrated

that both simulation tools are accurate and consistent during steady-state and transients situations.

[108, 109, 110] investigated the various issues of VSC-HVDC using SimPowerSystems toolbox,

including subsynchronous resonance, robust sliding-mode Controller, and Small-signal stability

analysis.
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Therefore, MATLAB/SimPowerSystems simulation is also used as a tool to validate the impedance

model based analysis.

8.2.1 Feed-forward Filter

The feed forward filter in the current control loop as shown in (8.3) has impact on the input

admittance of rectifier Yrec(s) and hence can influence resonance stability. Ed and Eq are the feed

forward PCC voltages in dq frame after the filter. In this subsection, the impact on stability of a

second-order filter is compared with a first order filter. The transfer function of a first order low

pass filter is as follows:

F1st(s) =
1

sτ + 1
. (8.31)

where τ is the time constant (0.001 s). Two scenarios with same power transfer level (100 MW)

and same inverter control structures are examined:

• The feed-forward filter at the rectifier is a 1st order filter

• The feed-forward filter at the rectifier is a 2nd order filter

The line inductance Lg is chosen to be 0.05 H.

Figs. 8.6 and 8.7 present the real part of the total impedances for the rectifier side ac system

and the inverter side ac system. Analysis of complex torque coefficients method in [111] indicated

that the resonance frequencies are related to the roots of the real part of a transfer function. A

brief explanation is offered as follows.

Assuming there are only oscillatory modes in the system, then Zg(s) + Zconv(s) (Zconv = Y −1)

should only have roots appearing as complex conjugate pairs (−σl ± ωl). Zg(s) and Zconv(s) are

rational functions. Therefore

Zg(s) + Zconv(s) =
P (s)

Q(s)
(8.32)
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where P (s) and Q(s) are polynomials of s

P (jω) = γ
n∏
l

(jω + σl + jωl)(jω + σl − jωl)

= γ

n∏
l

(σ2
l + ω2

l − ω2 + 2jσlω) (8.33)

where γ is a constant.

Assuming negligible damping terms, then P (jω) is a real function and denoted as PR(ω). Hence

Re(Zg(jω) + Zconv(jω)) = α(ω)PR(ω) (8.34)

where α(ω) is also a real function.

When s = jωl, PR(ωl) ≈ 0, and hence Re(Zg(s)+Zconv(s)) ≈ 0. From the roots of the real part

of the total impedances, resonance frequencies can be identified. For example, from Fig. 8.6, the

resonance frequencies are 70 Hz and 190 Hz when 1st order filter or 2nd order filter is employed.
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Figure 8.6. Real part of the total impedance (left-hand side grid impedance plus converter
impedance) at rectifier side.
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Figure 8.7. Real part of the total impedance (right-hand side grid impedance plus converter
impedance) at inverter side.

A detailed VSC-HVDC model is built in MATLAB SimPowerSystems to verify the analysis.

The parameters of the system are listed in Table 8.3. The HVDC system is operated at 100 MW

power transfer level. Fig. 8.8 shows the rectifier side d-axis current with two types of filters, where

the oscillation frequency in the case of first-order filter is much lower than that when the 2nd -order

filter case. Fig. 8.10 shows the active power at the rectifier side with two types of filter. Figs. 8.11

and 8.13 present the d-axis current and active power at the inverter side. Fig. 8.9 and Fig. 8.12

shows the d axis PCC voltage at rectifier and inverter stations with different filters. The d-axis

PCC voltage with first order filter is lower than the d-axis PCC voltage with second order filter.

Since the rectifier station operates on power control mode, which causes the d-axis current with

first order filter case higher than the current with second order filter. The inverter station delivers

active power transferred from rectifier station to right-hand side grid, therefore, the d-axis current

with first order filter case is also higher than the second order filter case.
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Figure 8.8. Rectifier side d-axis current with different filters.
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Figure 8.9. Rectifier side d-axis PCC voltage with different filters.
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Figure 8.10. Rectifier side active power with different filters.

Figs. 8.8 and 8.10 show that the rectifier side ac system possesses a resonance around 70 Hz

with 1st order filter and 190 Hz with 2nd order filter. This observation corroborates with the

analysis in total impedance frequency responses in Fig. 8.6.

The inverter side ac system possesses at least two resonance frequencies as shown in Fig. 8.7

where two roots are identified. Simulation results also demonstrate more complicated waveforms

in d-axis current and active power. The rectifier side ac line inductance is 0.02H while the inverter

side line inductance is 0.012H. The resonances cause around 5% ripples in waveforms and do not

pose stability issues.

8.2.2 ac Line Length

The impact of the line length of the rectifier ac side on resonance is studied in this subsection.

The inductance of the rectifier ac system is varied to reflect the change of length. First-order feed

forward filter is adopted in the current controller of the VSC. The power transfer level is set to 100

MW. The Nyquist curves for the eigenvalues of Y Zg are presented in Fig. 8.14.
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Figure 8.11. Inverter side d-axis current with different filters.
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Figure 8.12. Inverter side d-axis PCC voltage with different filters.
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Figure 8.13. Inverter side power with different filters.
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Figure 8.15. Simulation results of id and iq. Lg = 0.05H.
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Figure 8.16. Nyquist curves for the eigenvalues of Y Zg (rectifier ac system) for two power levels.
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Figure 8.17. d-axis current with different power level.
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Figure 8.18. Active power with different power level.
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The Nyquist curves shows that with the increase of line length, the more the system is prone

to instability. Take the example of Lg = 0.12H, the time domain simulation results of the rectifier

ac grid currents in dq-axis are shown in Fig. 8.15. It is clearly that the system has lost stability.

8.2.3 Power Level

Power transfer level is indicated in [63] to impact the converter impedance. Hence in this

subsection, the impact of power level is investigated. Fig. 8.16 gives the Nyquist curves for one

of the eigenvalues of Y Zg (rectifier ac system) for two power levels (100 MW and 170 MW). The

line inductance is chosen to be 0.05 H. It is found from Nyquist curves that the higher the power

transfer level, the more the system is prone to resonance.

The d-axis currents at the two power levels are shown in Fig. 8.17 and the active powers in the

rectifier ac system at the two power levels are shown in Fig. 8.18. It can be observed that at 100

MW level, the ripple magnitude in id is about 5% of the mean magnitude, while it is more than

30% at 170 MW level.
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CHAPTER 9

DC IMPEDANCE-MODEL-BASED RESONANCE ANALYSIS OF A VSC-HVDC
SYSTEM

The harmonic resonances in VSC interfaced ac grids have been examined in [98, 99, 101, 100, 63].

In addition, subsynchronous resonances due to the interaction of a VSC and a series compensated

ac network are examined in [112, 113]. A comprehensive examination of both the ac systems (the

rectifier side and the inverter side) of a VSC-HVDC system has been described in Chapter 8.

Impedance models for the two ac systems were derived and used for resonance analysis. However,

a comprehensive dc impedance based analysis on the dc system while taking both rectifier and

inverter station into account has not been seen in the literature. This chapter will address this

topic. The VSC-HVDC system has various different converter topology choices to be implemented.

Among those topologies, two-level converter, three-level converter and Modular Multilevel converter

(MMC) are three topologies with most of interest. Regarding the current harmonics spectrums on

ac side within those topologies, the most significant harmonic would be around the switching

frequency which is normally around 1.6kHz for two-level converters, and the frequency will be

increased to doubled switching frequency for three-level converters. The current waveforms have

significant improvements for MMC topology, and the most significant harmonic is always higher

than two-level and three-level converters, and would depend on the number of converter modules

in each leg. However, the resonance frequencies discovered by [104] are at low range, such as below

200Hz, which is far away from the switching frequencies and imply that the topology has limited

impacts on ac side resonance. The dc impedance modeling depends on the topology of dc side

much, which makes non-negligible differences among those topologies. For a three-level converter

topology, the dc side is similar with two-level converters. However, the neutral point voltage clamp

structure brings additional unique inherent voltage variations comparing to two-level converters.
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The neutral point voltage varies at three times of the fundamental frequency [114], which imposes

additional harmonics on dc side. Instead of a single or two capacitors, the MMC topology consists

of a large number of submodules, and each module has a capacitor, which makes the equivalent

dc capacitor is a series connection of various capacitors [115]. Furthermore, the series number is

not a constant and depends on the switching state of each submodule. That characteristic would

impose high frequency voltage oscillations on dc side and requires additional investigation to be

implemented. This chapter will then focus on the two-level converter topology which has a single

capacitor on dc side.

Most of the dc side impedance modeling for converters are focused on single converter and

machine drive applications [116, 117, 118]. In addition, few papers have presented dc impedance

models with the effect of converter controls included. For example, Sudhoff et al in [116] discussed

dc impedance model for a dc/ac converter. The converter is assumed to be a constant power load

and the incremental impedance is a negative resistance. In a most recent paper [118], a dc input

admittance model is developed for a dc/ac converter interfaced permanent-magnet synchronous

motor (PMSM). PMSM dynamics are included in the model. However, the converter controller

dynamics are neglected.

For a VSC-HVDC system, at least two converter stations exist and the control mechanism for

each station is different, which implies the dc impedance modeling may have different characteristics

for each station. Therefore, a comprehensive analysis of dc impedance modeling of a VSC-HVDC

system is required to better understand the dc resonance issues. In this chapter, dc resonance

issues will be investigated for a two-terminal VSC-HVDC system. Typical VSC-HVDC controls

and a practical dc transmission line will be adopted. Frequency domain analysis will be applied

to examine the characteristics of the derived dc impedance models. The models will be verified by

comparing with the frequency responses obtained from a detailed VSC-HVDC system simulated

in a real-time digital simulator. Real-time digital simulations will also be used to validate the dc

resonance analysis on the impact of dc capacitor and power transfer levels.
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9.1 Analysis

9.1.1 System Model

A two-terminal VSC-HVDC transmission system is shown in Fig. 8.1. The basic controllers for

both rectifier and inverter stations are depicted in Fig. 8.1. Since the structure of both stations

are identical, each station could operate on either rectifier or inverter mode depending on the

requirement of system operator. Normally, the rectifier station controls the amount of active power

transfer, and the inverter station controls dc-link voltage in order to keep power transfer balance.

Both stations are able to compensate reactive power to ac grid by directly injecting reactive power

or control the ac grid voltage.

Table 9.1. System parameters of VSC-HVDC model

Quantity Value

ac system line voltage 100kV

ac system frequency 60Hz

Grid impedance 0.01Ω/1.88mH

Grid filter capacity 18Mvar

Grid filter tuning frequency 1620Hz

dc rated voltage 250kV

dc cable parameters 0.0139Ω/km, 0.159mH/km, 0.231µF/km

dc cable length 50km

An equivalent model of a VSC connecting with an ac voltage source via an inductor is shown

in Fig. 9.1. The ac voltage source is represented by an ideal voltage source vs in series with an

impedance Z(s). The PCC voltage is then represented by E. After the coupling inductor L,

the equivalent output voltage of the VSC is called v. At the dc side of VSC, the dc-link voltage

and current are represented by vdc and idc. The capacitor Cdc is used to stabilize the dc voltage,

while idc1 is the net current flowing to the other station. (9.1) describes the voltage and current

relationship between grid and converter in dq frame. The letter with upper-line represents complex

space vector, such as v = vd + jvq and i = id + jiq. The angular speed within grid reference frame

is ω, which is a constant throughout this chapter.
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Figure 9.1. A model of VSC and grid.

Table 9.2. Parameters of individual VSC

Quantity Value

Switching frequency 1620Hz

Grid filter 0.01Ω/0.02H

Grid impedance 0.01Ω/1.88mH

dc capacitor 900µF

L
di

dt
+ jωLi = E − v (9.1)

9.1.2 Impedance Model

9.1.2.1 Rectifier Station

This chapter investigates the dc impedance model of a VSC-HVDC system, which focuses on

the dc side analysis. In order to derive the dc impedance model, the ratio of small variation of dc

voltage and dc current has to be implemented.

The dc power analysis will be performed in order to derive impedance model. The objective of

dc impedance derivation is to find out the expression of ∆vdc
∆idc

. In order to relate vdc and idc to ac

quantities, one solution is the power relationship. Since the controller of VSC-HVDC utilizes dq

decoupling control algorithm, the abc three-phase voltage and current quantities vabc and iabc are

then converted into dq frame as vdq and idq by Park transformation. The three-phase instantaneous

power can then be expressed by dq quantities as vaia + vbib + vcic = vdid + vqiq. When neglecting

the power loss on IGBTs switches, the power on ac side is equal to the power on dc side vdcidc,

which yields equation (9.2). Taking the small signal analysis on (9.2) and rearranging the equation
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can lead to the relation between ∆vdc and ∆idc, which is shown in (9.3). In (9.3), the variables

vdq and idq are ac side quantities, which implies the derivation should involve both dc and ac side.

Hence, in order to get an expression of the dc impedance ( ∆vdc
∆idc

), the ac side variables (∆vdq and

∆idq) have to be expressed in terms of ∆vdc and ∆idc.

vdcidc = vdid + vqiq (9.2)

∆vdcidc0 = −vdc0∆idc +

[
id0 iq0

] ∆vd

∆vq


+

[
vd0 vq0

] ∆id

∆iq


(9.3)

The controller consists of current control and power control. The current control analysis will

be implemented as follows. The rectifier station controls the amount of active power transferred

to inverter station, and can also compensate reactive power to grid to support the ac voltage. The

control system of rectifier stations is shown in Fig. 9.2, where P is the measured active power sent

to inverter station. There are two control loops in Fig. 9.2, the outer loop is power control loop

which controls the active power transfer and grid ac voltage. The outer control loop generates the

reference of dq currents. The inner control loop regulates the dq axis currents and tries to track

the respective reference value which is obtained from outer control loop. The analysis of current

control is identical to the ac impedance modeling which in shown in [104] and the details will be

skipped. The current i can be expressed as (9.4),

PWM2/3
PI

dE

drefv

qrefv

refvα

refvβ

, ,aref bref crefv
drefi

qrefi

di

qi

Lω

−

+

+
PI

−

−
+ −+

−

Lω

eje θ−
refP

P

qE+

−
PI

refE

E
PI

−

Figure 9.2. Controller of the rectifier station.
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i =

 gc(s) 0

0 gc(s)


︸ ︷︷ ︸

Gc(s)

iref +

 yi(s) 0

0 yi(s)


︸ ︷︷ ︸

Yi(s)

E (9.4)

where i, iref and E are vectors of d-axis and q-axis variables.

 gc(s) =
kps+ki

Ls2+kps+ki

yi(s) = s2(s+2ξω0)
(Ls2+kps+ki)(s2+2ξω0s+ω2

0)

(9.5)

The parameters in (9.5) can be found in the current PI controller Fc(s) = kp + ki
s and the second-

order filter F2nd(s) =
ω2
0

s2+2ξω0s+ω2
0
, which is used to feed forward the measured PCC voltage Ed

and Eq. The cut-off frequency ω0 is chosen at 1000 Hz and damping factor ξ is 1√
2
.

From Fig. 9.1, vs is the grid voltage, which is always treated as a constant. However, the PCC

voltage E can be affected by the source impedance Z and current i. Therefore, the impact of source

impedance Z has to be taken into account. The source voltage can be expressed as (9.6), which

can be linearized as (9.7).

vs = E + Zi (9.6)

∆vs = ∆E + Z∆i (9.7)

Combining (9.6) and (9.4) yields (9.8), which can also be linearized as (9.9).

i =
1

1 + Yi(s)Z(s)
[Gc(s)iref + Yi(s)vs] (9.8)

∆i = [I + Yi(s)Z(s)]−1[Gc(s)∆iref + Yi(s)∆vs] (9.9)

(9.9) gives the expression of ac current in terms of source voltage and current reference.

The power control analysis is performed as follows. The power conversion efficiency of IGBTs

within a two-level VSC-HVDC system is around 98%, and the efficiency increases to 99.5% for
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a MMC topology [119]. Hence, the active power loss on the IGBTs within rectifier station can

be neglected, and the measured active power can also be expressed as P = vdcidc. However,

the damping in the system would be lower than the real system during analysis because of the

neglecting of power loss. From Fig. 9.2, the reference of d axis current can be expressed as (9.10),

where Fp(s) = kp p +
ki p

s is a PI controller.

id ref = (Pref − vdcidc)Fp(s) (9.10)

Linearizing (9.10) yields (9.11).

∆id ref =

[
−idc0Fp(s) −vdc0Fp(s)

] ∆vdc

∆idc

 (9.11)

The reference of q axis current can be expressed as (9.12), where Fac(s) = kp ac + ki ac
s is the ac

voltage PI controller.

iq ref = (Ed ref − Ed)Fac(s) (9.12)

Linearizing (9.12) yields (9.13).

∆iq ref = −∆EdFac(s)

=

 −2sLFac(s) + Ed0Fac(s)
id0

−2sL
iq0Fac(s)

id0


T  ∆id

∆iq



+

 − idc0Fac(s)
id0

−vdc0Fac(s)
id0


T  ∆vdc

∆idc


(9.13)

Combining (9.11) and (9.13) yields the expression of ∆id ref and ∆iq ref , which is (9.14).

 ∆id ref

∆iq ref

 = Gp1

 ∆id

∆iq

+Gp2

 ∆vdc

∆idc

 (9.14)
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Gp1 =

 0 0

−2sLFac(s) + Ed0Fac(s)
id0

−2sL
iq0Fac(s)

id0

 (9.15)

Gp2 =

 −idc0Fp(s) −vdc0Fp(s)
− idc0Fac(s)

id0
−vdc0Fac(s)

id0

 (9.16)

At steady state, the PCC voltage in dq frame is Edq = vdq + ZL(s)idq, in which ZL(s) is

the coupling inductor represented in dq frame. Hence, rewriting (9.2) can obtain the relation

between dc quantities and PCC voltage and dq currents, which is shown in (9.17). The small

signal representation of which is then expressed as (9.18). The Phase Locked Loop (PLL) in the

controller tracks the phase of phase A voltage at PCC. The phase information is then applied for

abc − dq transformation. Hence, the output of PLL would be stable without disturbance if the

PCC voltages are three-phase balanced sinusoidal voltages and the response speed of PLL is tuned

fast. Throughout this chapter, the PCC voltages are always balanced and therefore the impacts

of PLL can be neglected. Hence, we can assume the q axis component of PCC voltage is always

0, which implies ∆Eq = 0. Therefore, (9.18) can be rearranged, and we can get ∆Ed in terms of

idq, vdc and idc, which is shown in (9.19).

vdcidc =

[
vd vq

] id

iq

 =

 vd

vq


T  id

iq


= (

 Ed

Eq

− ZL(s)

 id

iq

)T

 id

iq


= (

 Ed

Eq

−
 sL −ωL

ωL sL


 id

iq

)T

 id

iq



=

 Ed − sLid + ωLiq

Eq − sLiq − ωLid


T  id

iq


= Edid + Eqiq − sLi2d − sLi2q

(9.17)
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∆vdcidc0 + vdc0∆idc = ∆Edid0 + Ed0∆id + ∆Eqiq0

+ Eq0∆iq − 2sLid0∆id − 2sLiq0∆iq

(9.18)

∆Ed =

 2sL− Ed0
id0

2sL
iq0
id0
− Eq0

id0


T  ∆id

∆iq

+

 idc0
id0

vdc0
id0


T  ∆vdc

∆idc

 (9.19)

Rewriting (9.7) into dq reference frame and combining with (9.19) yields (9.20), in which rg

and Lg are the source resistance and inductance respectively.

 ∆vsd

∆vsq

 =

 ∆Ed

∆Eq

+

 rg + sLg −ωLg

ωLg rg + sLg


 ∆id

∆iq


=

 2sL− Ed0
id0

+ rg + sLg 2sL
iq0
id0
− ωLg

ωLg rg + sLg


︸ ︷︷ ︸

Gv1

 ∆id

∆iq



+

 idc0
id0

vdc0
id0

0 0


︸ ︷︷ ︸

Gv2

 ∆vdc

∆idc


(9.20)

Now, ∆iref and ∆vs are both expressed in terms of ∆idq, ∆vdc and ∆idc. Therefore, combining

(9.9), (9.14) and (9.20) yields (9.21),

 ∆id

∆iq

 = Mi dc

 ∆vdc

∆idc

 (9.21)

where

Mi dc =
{
I − [I + Yi(s)Z(s)]−1(Gc(s)Gp1 + Yi(s)Gv1)

}−1

[I + Yi(s)Z(s)]−1(Gc(s)Gp2 + Yi(s)Gv2)

(9.22)
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The equivalent output voltage of rectifier vdq in dq reference frame is depicted in (9.23).

 vd

vq

 =

 Ed − sLid + ωLiq

Eq − sLiq − ωLid

 (9.23)

Taking linearization leads to (9.24).

 ∆vd

∆vq

 =

 ∆Ed − sL∆id + ωL∆iq

∆Eq − sL∆iq − ωL∆id


=

 ∆Ed

∆Eq

+

 −sL ωL

−ωL −sL


 ∆id

∆iq


= Mv dc

 ∆vdc

∆idc


(9.24)

where

Mv dc =

 sL− Ed0
id0

2sL
iq0
id0

+ ωL

−ωL −sL

Mi dc

+

 idc0
id0

vdc0
id0

0 0


(9.25)

Taking (9.21) and (9.24) back into (9.3), the following (9.26) can be obtained.

∆vdcidc0 = −vdc0∆idc +

[
id0 iq0

]
Mv dc

 ∆vdc

∆idc


+

[
vd0 vq0

]
Mi dc

 ∆vdc

∆idc


(9.26)

Rewriting (9.26) yields the expression of idc0,
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idc0 = −vdc0
∆idc
∆vdc

+

([
id0 iq0

]
Mv dc +

[
vd0 vq0

]
Mi dc

)
︸ ︷︷ ︸

M

 1

∆idc
∆vdc

 (9.27)

The dc impedance model of rectifier station is then expressed as (9.28)

Zdc =
∆vdc
∆idc

=
M(1, 2)− vdc0
idc0 −M(1, 1)

(9.28)

It can be remarked that although the expression of dc impedance model (9.28) involves grid

impedance parameters, the impact of which can be neglected even varying its values. Fig. 9.3

shows the bode plots of dc impedance model of rectifier station with two different grid impedances.

The blue trace is the bode plot with grid impedance of 18.8mH, and the green trace is the bode

plot with grid impedance of 1.88mH. Other system parameters can be found in Tables 9.1, 9.2,

and 9.2. The detailed bode plot in Fig. 9.4 demonstrates the impacts of grid impedances on dc

impedance model is very limited. It implies that the ac side parameters have little impact on dc

side and the converters isolate ac/dc systems.

9.1.2.2 Inverter Station

The inverter station controls dc-link voltage and ensures power transfer balance. Fig. 9.5

shows the controller of inverter station, in which a dual loop control strategy is also adopted as

rectifier station. The only difference between rectifier station is the generation of d axis current

reference. The dc-link voltage is measured and feed back to the controller, and the error between

its corresponding reference is sent to a PI controller to generate the d axis current reference.

Table 9.3. Parameters of controllers

Quantity Value

Current controller kp=50, ki=100

dc-link voltage controller kp=0.04, ki=0.2

ac voltage controller kp=0.01, ki=100
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Figure 9.3. Bode plots of dc impedance model of rectifier station with different Z(s).
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Figure 9.4. Detailed bode plots of dc impedance model of rectifier station.
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Figure 9.5. Controller of the inverter station.

Therefore, the d axis current reference can be expressed as (9.29).

id ref = (Vdc ref − vdc)Fdc(s) (9.29)

Linearizing it yields the expression of ∆id ref .

∆id ref =

[
0 0

] ∆id

∆iq

+

[
−Fdc(s) 0

] ∆vdc

∆idc

 (9.30)

Since the inverter station controller also controls ac grid voltage, (9.12) can be used to describe

q axis current reference for inverter station. Combining (9.30) and (9.13) yields (9.14), where Gp1

is the same with (9.15) and the new Gp2 is shown in (9.31).

Gp2 =

 −Fdc(s) 0

− idc0Fac(s)
id0

−vdc0Fac(s)
id0

 (9.31)

The inner current controller is identical with rectifier station, hence, the derivation of impedance

model for inverter station can be implemented as the approach shown for rectifier station. Therefore,

(9.28) can be used to calculate the dc impedance for inverter station as well.
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9.2 Resonance Analysis

9.2.1 Verification

A two terminal VSC-HVDC system is built in MATLAB/Simulink via SimPowerSystems tool-

box. The system parameters and controller settings are shown in Table 9.1, 9.2, and 9.2. In order

to verify the derivation of dc impedance models in 9.1, the system was first divided into two isolated

parts, which are rectifier station and inverter station. Fig. 9.6 shows the setup of rectifier station

verification, where the 250kV dc voltage source is simulating an ideal inverter station, and a con-

stant magnitude variable frequency sinusoidal ac voltage is added to the dc source. The magnitude

is set at 5kV which is 2% of the dc source, and the frequency fsm varied from 1Hz to 1000Hz.

The dc voltage vdc and current idc are measured and feed into two discrete Fourier transforma-

tion blocks. The dc impedance of rectifier station at certain frequency then can be expressed as

Zrec(fsm) = Vdc(fsm)
Idc(fsm) . The verification setup in Fig. 9.6 contains a dc capacitor Cdc, however, the

derivation in 9.1 does not take the capacitor into account. Therefore, the complete dc impedance

can be found in (9.32).

L ( )Z s

svdcC
dcv
+

−

+

−

PCC

E
+

−

v

i
=



dci
+

−

250kV

5 , smkV f

Figure 9.6. Rectifier station verification setup.

Zrec =
Zdc

1 + sCdcZdc
(9.32)

The inverter station verification setup is depicted in Fig. 9.7, where a dc cable is included.

Instead of a 250kV dc voltage source, a constant dc current source with 251kV is used to simulate

an ideal rectifier station. Based on the dc cable parameters, as long as the inverter station can

regulate the dc voltage at 250kV, the active power sent to inverter station is fixed at 100MW. A 5kV

variable frequency sinusoidal ac voltage source is added and is used to calculate the dc impedance
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of inverter station. Since the dc cable is taken into account, the complete dc impedance of inverter

station is (9.33).

L ( )Z s

svdcC
dcv
+

−

+

−

PCC

E
+

−

v

i
=



dci

cable

cableZ

+

−

5 , smkV f

251kV

Figure 9.7. Inverter station verification setup.

Zinv =
Zdc

1 + sCdcZdc
+ Zcable (9.33)

Fig. 9.8 shows the verification results of dc impedance for rectifier station. The rectifier station

is set to send 100 MW constant active power to the dc voltage source. In Fig. 9.8, the solid

trace is the Bode plot of dc impedance of rectifier station computed via (9.32), while the discrete

squares are the measured dc impedance of rectifier station shown in Fig. 9.6. For example, we

intentionally impose a 5kV sinusoidal voltage source with a frequency of 100Hz on the 250kV dc

voltage source. The ripple parts of dc voltage vdc and dc current idc are measured for analysis. The

“Discrete Fourier” block in SimPowerSystems toolbox can be used to extract the magnitude and

phase of vdc and idc at fundamental frequency, which is 100Hz for this example case. Hence, the

dc impedance magnitude is then the magnitude ratio of vdc and idc, and the dc impedance phase is

the phase difference between vdc and idc. For the rectifier station verification simulation in Fig. 9.6,

the magnitude ratio of vdc and idc is -1.2dB, and the phase difference between vdc and idc is −91◦.

Respectively, for the inverter station verification simulation in Fig. 9.7, the magnitude ratio of vdc

and idc is 29.3dB, and the phase difference between vdc and idc is 84.3◦ at 100Hz. Other frequencies

from 1Hz to 1000Hz are used to verify the dc impedance model in a broad range. The results verify

a close match obtained and therefore validate the derivation of dc impedance in Section 9.1. The

dc impedance below 1Hz is not measured since lower frequency discrete Fourier transformations

become less accurate. The reason is that a large constant dc voltage source is used to simulate the
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Figure 9.8. Bode plot of dc impedance of rectifier station.

inverter station, however, small signals with lower frequencies are not easy to be extracted from

the large 250 kV dc voltage.

Fig. 9.9 demonstrates the comparison between computed and measured dc impedances for

inverter station. Same with the case for rectifier station, the dc impedances with frequency lower

than 1Hz are not measured. However, a reasonable agreement can be found for frequencies from

1Hz to 1000 Hz which validates the inverter dc impedance derivation in Section 9.1 as well.

9.2.2 dc Current Resonance Analysis

9.2.2.1 Impact of dc Capacitor

Once the dc impedances of rectifier and inverter stations are obtained via (9.32) and (9.33), the

dc current can be computed as (9.34)

idc = (vdc rec − vdc inv)
Yrec

1 + YrecZinv
(9.34)
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Figure 9.9. Bode plot of dc impedance of inverter station.

where vdc rec and vdc inv are dc terminal voltages of rectifier and inverter stations respectively.

Therefore, investigating the dc impedance item YrecZinv can predict dc current characteristics

[101, 100, 120].

Fig. 9.10 demonstrates the Nyquist plots of YrecZinv with different dc capacitor selections,

which indicates the impact of the capacitor size on dc current resonance frequencies. Examining the

points where the Nyquist traces crossing the unit circle can indicate the resonance frequencies. For

instance, the resonance frequency is 27.7Hz for 900uF capacitor, while the resonance frequencies are

18.8Hz and 12.0Hz for 1800 µF and 3600 µF respectively. Hence, the resonance frequency decreases

while the capacitance increases. The phase margin also increases and improve the stability while

the capacitance increases. Table 9.4 shows the resonance frequencies and phase margins for different

capacitor cases.

A two-terminal VSC-HVDC model is built in RT-LAB real time digital simulator environment.

The RT-LAB real-time digital simulator is a high performance computing platform developed by

OPAL-RT Technologies, which can simulate power system and power electronics detailed models

in real time. Therefore, it can provide precise simulation results and taking the switching details of
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Figure 9.10. Nyquist plots of YrecZinv.

Table 9.4. Comparison between different capacitor sizes

Capacitance Resonance frequency (Analysis/Simulation) Phase margin

900 µF 27.7Hz/28.5Hz 26◦

1800 µF 18.8Hz/19.5Hz 36.2◦

3600 µF 12.0Hz/14.25Hz 48.9◦

Figure 9.11. Simulation results of 900µF capacitor.
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Figure 9.12. Simulation results of 1800µF capacitor.

Figure 9.13. Simulation results of 3600µF capacitor.

Table 9.5. Comparison between different power levels

Power level Resonance frequency (Analysis/Simulation) Phase margin

100 MW 18.8 Hz/19.5 Hz 35.8◦

200 MW 18.8 Hz/20 Hz 36.2◦

-100 MW 18.8 Hz/19.5 Hz 37◦
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Figure 9.14. Nyquist plots of dc current characteristics at different power levels.

Figure 9.15. Simulation results of 1800µF capacitor at 200 MW.
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Figure 9.16. Simulation results of 1800µF capacitor at -100 MW.

IGBTs into account. Moreover, the simulation can run in real time and highly improve simulation

efficiency. Fig. 5.10 shows the setup of RT-LAB simulator and its corresponding oscilloscopes

which monitor the simulation signals, such as voltage, current and power.

In the simulation model, the rectifier station is set to send 100MW active power to inverter

station, and the dc-link voltage is set to 250kV. The dc capacitor varies to examine the dc current

resonance and comparing with the analysis results in Fig. 9.10. Fig. 9.11 shows the simulation

results for 900µF capacitor. The cyan trace is the active power sending to inverter station, the

mean value of which is 0.672 V. For the measurement system in this simulation, power, voltage

and current are measured in per unit system, and are displayed on oscilloscope in Volts. For this

case, 1V (1pu) represents 100 MW for power, and it also represents 400 A for current and 250 kV

for voltage. Therefore, the cyan trace indicates 1.05 pu active power is sending to inverter station.

The purple trace shows the dc-link mean voltage is 1.10 pu and dc mean current is 1.12 pu. The

red trace is the FFT analysis of dc current, which shows the highest harmonic is at 28.5 Hz and is

very close to 27.7 Hz in Fig. 9.10.

Figs. 9.12 and 9.13 are the simulation results of 1800µF and 3600µF cases. The highest

harmonics are at 19.5 Hz and 14.25 Hz respectively, and comparing with the analysis in Fig. 9.10,

a reasonable agreement can be found. According to Table 9.4, phase margin decreases as capacitor

sizes becoming smaller. This phenomenon is demonstrated in current ripple magnitudes. With
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the size increasing, the current ripple magnitudes found in Figs. 9.11, 9.12, 9.13 decrease. The

time-domain simulation results verify the analysis.

9.2.2.2 Impact of Power Level

Fig. 9.14 shows the Nyquist plot of YrecZinv at different power levels. The dc capacitor is chosen

at 1800µF . Active power transferred to inverter station is tested at 100 MW, 200 MW and -100

MW which means reverse power transfer for this case. The resonance frequency for each power

level is almost the same on the Nyquist plot. Table 9.5 shows the resonance frequencies and phase

margins for different power levels. Although higher power transfer level makes the phase margin

decrease small amount, the impact on dc stability can be neglected.

Fig. 9.15 and 9.16 show the real-time simulation results for 200 MW and -100 MW cases. The

FFT analysis of dc current indicates resonance frequencies are 20 Hz and 19.5 Hz, which are very

close to the 100 MW case shown in Fig. 9.12.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

This dissertation can be concluded in five parts as follows.

First, modeling and control of battery and PV station of a microgrid are presented in Chapters

3 and 4. A battery to improve the microgrid operation such as power flow and autonomous mode

is discussed in Chapter 4. A coordinated control strategy between battery and PV station within

a microgrid is introduced in Chapter 4.

Second, unbalance and harmonic currents mitigation by the VSC of a battery for microgrid is

designed and verified with RT-LAB in chapter 5. The power quality issues have been carefully

addressed, and the PR controller has been verified can efficiently remove the negative sequence and

harmonic currents.

A novel dc voltage controller design approach is proposed in Chapter 6 and the controller

parameters are proved can be precisely obtained based on the performance requirement of the

system operator.

The fourth part investigates the Multi-terminal VSC-HVDC operation which includes a four

terminal stations. A power droop control scheme is designed to split the active power to two

inverter stations based on the droop coefficients. A novel fault control method to limit the dc

voltage overshoot is designed and verified in simulation tool.

The fifth part analyzes the VSC-HVDC system based on impedance modeling at both ac and dc

side in Chapter 9 and 10. The system structure and controller details are both taken into account

when developing the models. The feed-forward filter, ac line length and power level are found to
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have significant affect on ac side resonance, while the dc side capacitor affects the dc side resonance

most.

10.2 Future Work

The future work of this dissertation can contain the following parts.

First, a comprehensive microgrid with different renewable energy resources can be built in RT-

LAB for real-time simulation. The PV irradiation profile and wind speed profile can be included

into the system for studies on hourly scale. Optimized system power flow and economic operation

can be investigated.

Second, the PLL dynamics and system short circuit level can be included in the dc impedance

modeling of the VSC-HVDC in Chapter 9. Under weak system scenario, the dc impedance model

may have different characteristics so the resonance on dc side may have different properties.

Last, a hybrid VSC-HVDC and LCC-HVDC system can be investigated in RT-LAB environ-

ment. Since LCC-HVDC has been deployed into the system several decades ago, the interaction

between LCC-HVDC and newly constructed VSC-HVDC will be an interesting research topic.
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Appendix A List of Abbreviations

ac alternate current

CIGRÉ International Council on Large Electric Systems

D-STATCOM Distribution Static Compensator

dc direct current

DERs Distributed Energy Resources

DFIG Doubly-Fed Induction Generator

DOD Depth of Discharge

DPC Direct Power Control

EMTDC Electro-Magnetic Transients for DC

FFT Fast-Fourier Transformation

FPGA Field-Programmable Gate Array

GSVSC Grid Side Voltage Source Converter

HC Harmonic Current

HVDC High Voltage Direct Current

IEEE Institute of Electrical and Electronics Engineers

IGBT Insulated-Gate Bipolar Transistor

KCL Kirchhoff’s Current Law

KVL Kirchhoff’s Voltage Law

LCC Line-Commutated Converters
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Appendix A (Continued)

LCC-HVDC Line-Commutated Converters based High Voltage Direct Current

MATLAB Matrix Laboratory

MHVDC Multi-terminal HVDC

MMC Modular Multilevel Converter

MPPT Maximum Power Point Tracking

PCC Point of Common Coupling

PES Power and Energy Society

PI Proportional-Integral

PLL Phase Lock Loop

PMSM Permanent-Magnet Synchronous Motor

PQ Active power/Reactive power

PR Proportional-Resonant

PSCAD Power Systems Computer Aided Design

PSPICE Personal Simulation Program with Integrated Circuit Emphasis

PV Photovoltaic

PWM Pulse Width Modulation

RHP Right-Half-Plane

RL Resistor-Inductor

RLC Resistor-Inductor-Capacitor
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Appendix A (Continued)

RMS Root Mean Square

SISO Single Input Single Output

SIT System Identification Toolbox

SMC Sliding Mode Control

SOC State of Charge

STATCOM Static Synchronous Compensator

THD Total Harmonic Distortion

UC Unbalanced Current

Vf Voltage/frequency

VSC Voltage-Source Converters

VSC-HVDC Voltage-Source Converters based High Voltage Direct Current

WFVSC Wind Farm side voltage Source Converter
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